
Software Diversification
for WebAssembly
JAVIER CABRERA-ARTEAGA

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till
offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik i Sal
F3, Lindstedtsvägen 26, Kungliga Tekniska Högskolan, Stockholm.

Doctoral Thesis in Computer Science
Supervised by
Benoit Baudry and Martin Monperrus

Stockholm, Sweden, March 2024

TRITA-EECS-AVL-2024:10
ISBN 978-91-8040-822-6

© Javier Cabrera-Arteaga , March 7th 2024

Tryck: Universitetsservice US AB

Abstract

WebAssembly, now the fourth officially recognized web language, enables
web browsers to port native applications to the Web. Furthermore,
WebAssembly has evolved into an essential element for backend scenarios such
as cloud and edge computing. Therefore, WebAssembly finds use in a plethora
of applications, including but not limited to, web browsers, blockchain, and
cloud computing. Despite the emphasis on security since its design and
specification, WebAssembly remains susceptible to various forms of attacks,
including memory corruption and side-channels. Furthermore, WebAssembly
has been manipulated to disseminate malware, particularly in cases of browser
cryptojacking.

Web page resources, including those containing WebAssembly binaries,
are predominantly served from centralized data centers in the modern digital
landscape. In conjunction with browser clients, thousands of edge devices
operate millions of identical WebAssembly instantiations every second.
This phenomenon creates a highly predictable ecosystem, wherein potential
attackers can anticipate behavior either in browsers or backend nodes. Such
predictability escalates the potential impact of vulnerabilities within these
ecosystems, paving the way for high-impact side-channel and memory attacks.
For instance, a flaw in a web browser, triggered by a defective WebAssembly
program, holds the potential to affect millions of users.

This work aims to harden the security within the WebAssembly
ecosystem through the introduction of Software Diversification methods
and tools. Software Diversification is a strategy designed to augment
the costs of exploiting vulnerabilities by making software less predictable.
The predictability within ecosystems can be diminished by automatically
generating different, yet functionally equivalent, program variants. These
variants strengthen observable properties that are typically used to launch
attacks, and in many instances, can eliminate such vulnerabilities.

This work introduces three tools: CROW, MEWE as compiler-based
approaches, and WASM-MUTATE as a binary-based approach. Each tool has
been specifically designed to tackle a unique facet of Software Diversification.
We present empirical evidence demonstrating the potential application of our
Software Diversification methods to WebAssembly programs in two distinct
ways: Offensive and Defensive Software Diversification. Our research into
Offensive Software Diversification in WebAssembly unveils potential paths for
enhancing the detection of WebAssembly malware. On the other hand, our
experiments in Defensive Software Diversification show that WebAssembly
programs can be hardened against side-channel attacks, specifically the
Spectre attack.

Keywords: WebAssembly, Software Diversification, Side-Channels

Sammanfattning

WebAssembly, nu det fjärde officiellt erkända webbspråket, gör det möjligt
för webbläsare att portera nativa applikationer till webben. Dessutom har
WebAssembly utvecklats till en väsentlig komponent för backend-scenarier
såsom molntjänster och edge-tjänster. Därmed används WebAssembly
i en mängd olika applikationer, däribland webbläsare, blockchain och
molntjänster. Trots sitt fokus på säkerhet från dess design till dess
specifikation är WebAssembly fortfarande mottagligt för olika former av
attacker, såsom minneskorruption och sidokanalattacker. Dessutom har
WebAssembly manipulerats för att sprida skadlig programvara, särskilt
otillåten cryptobrytning i webbläsare.

Webbsideresurser, inklusive de som innehåller exekverbar WebAssembly,
skickas i en modern digital kontext huvudsakligen från centraliserade
datacenter. Tusentals edge-enheter, i samarbete med webbläsarklienter,
kör miljontals identiska WebAssembly-instantieringar varje sekund. Detta
fenomen skapar ett högst förutsägbart ekosystem, där potentiella angripare
kan förutse beteenden antingen i webbläsare eller backend-noder. En sådan
förutsägbarhet ökar potentialen för sårbarheter inom dessa ekosystem och
öppnar dörren för sidkanal- och minnesattacker med stor påverkan. Till
exempel kan en brist i en webbläsare, framkallad av ett defekt WebAssembly-
program, ha potential att påverka miljontals användare.

Denna avhandling syftar till att stärka säkerheten inom WebAssembly-
ekosystemet genom införandet av metoder och
verktyg för mjukvarudiversifiering. Mjukvarudiversifiering är en strategi som
är utformad för att öka kostnaderna för att exploatera sårbarheter genom
att göra programvaran oförutsägbar. Förutsägbarheten inom ekosystem kan
minskas genom att automatiskt generera olika programvaruvarianter. Dessa
varianter förstärker observerbara egenskaper som vanligtvis används för att
starta attacker och kan i många fall helt eliminera sådana sårbarheter.

Detta arbete introducerar tre verktyg: CROW, MEWE och WASM-
MUTATE. Varje verktyg har utformats specifikt för att hantera en unik
aspekt av mjukvarudiversifiering. Vi presenterar empiriska bevis som visar
på potentialen för tillämpning av våra metoder för mjukvarudiversifiering
av WebAssembly-program på två distinkta sätt: offensiv och defensiv
mjukvarudiversifiering. Vår forskning om offensiv mjukvarudiversifiering
i WebAssembly avslöjar potentiella vägar för att förbättra upptäckten
av WebAssembly-malware. Å andra sidan visar våra experiment inom
defensiv mjukvarudiversifiering att WebAssembly-program kan härdas mot
sidokanalattacker, särskilt Spectre-attacken.

LIST OF PAPERS

1. WebAssembly Diversification for Malware Evasion
Javier Cabrera-Arteaga,Tim Toady, Martin Monperrus, Benoit Baudry
Computers & Security, Volume 131, 2023, 17 pages
https://www.sciencedirect.com/science/article/pii/S01674048230
02067

2. WASM-MUTATE: Fast and Effective Binary Diversification for
WebAssembly
Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, Benoit
Baudry
Computers & Security, 2024, 20 pages
https://www.sciencedirect.com/science/article/pii/S01674048240
00324

3. Multi-Variant Execution at the Edge
Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit
Baudry
Workshop on Moving Target Defense (MTD 2022), 12 pages
https://dl.acm.org/doi/abs/10.1145/3560828.3564007

4. CROW: Code Diversification for WebAssembly
Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry,
Martin Monperrus
Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb
2021), 12 pages
https://doi.org/10.14722/madweb.2021.23004

5. Superoptimization of WebAssembly Bytecode
Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas
Satabin, Benoit Baudry, Martin Monperrus
Conference Companion of the 4th International Conference on Art, Science,
and Engineering of Programming (Programming 2021), MoreVMs, 4 pages
https://doi.org/10.1145/3397537.3397567

6. Scalable Comparison of JavaScript V8 Bytecode Traces
Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019), 10 pages
https://doi.org/10.1145/3358504.3361228

iii

https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://dl.acm.org/doi/abs/10.1145/3560828.3564007
https://doi.org/10.14722/madweb.2021.23004
https://doi.org/10.1145/3397537.3397567
https://doi.org/10.1145/3358504.3361228

ACKNOWLEDGEMENT

First and foremost, to my beloved wife, Ilena - this journey has been yours as mine.

Five years ago, relocating to Sweden for a Ph.D. journey seemed unimaginable. At
that time, I was grappling with the decision of whether to advance my academic pursuits.
During this phase of uncertainty, my mentor and friend, Oscar Luis Vera, presented a
life-changing opportunity: a Ph.D. position in Software Engineering at KTH. Now, as
I look back over these past five years, I see a journey marked by challenges. Each step,
no matter how difficult, has contributed immeasurably to my growth and learning. I
carry with me a deep sense of accomplishment and no regrets—my heartfelt thanks to
Oscar and Ali.

I want to thank the distinguished members of my jury. Professor Sukyoung Ryu,
thanks for accepting to take the role of opponent in my defense. Professor Dilian Gurov,
thanks for taking the advance review of this work. Professors, Quentin Stiévenart, Bjorn
De Sutter, and Weihang Wang, thank you all for being part of my grading committee
and for your invaluable insights.

I would like to extend my gratitude to my supervisors, Benoit Baudry and Martin
Monperrus. Their guidance has been a constant, ensuring that I never felt lost. Their
support extended beyond professional advice, blossoming into a genuine friendship.
There were times when I might have been challenging to work with, but I deeply
appreciate your patience and willingness to listen - all that many histories about Cuba
could be boring :) - Thank you, Benoit and Martin.

Over the past five years, a significant period in my life, I have had the privilege
of meeting and working with many people. Each one has played a unique role in
contributing to my work. I extend my heartfelt gratitude to my lab colleagues for
their unwavering support and collaboration. Special thanks to Cesar Soto, Nicolas
Harrand, Romi Tsoupidi, Javier Ron, Erik Gustavsson, Nadia Campo, Orestis Floros,
Long Zhang, He Ye, Deepika Tiwari, Zimin Chen, Khashayar Etemadi, Amir Ahmadian,
Mikhail Shcherbakov, Yi Liu, André Silva and Anoud Alshanak for their invaluable
contributions and camaraderie.

These last five years have been supported by the Stiftelsen för Strategisk
Forskning(SSF) and the Trustfull project. I would like to thank all my colleagues in
this project, especially Professor Musard Balliu for his invaluable insights.

To my Cuban friends in Sweden. Our roots in Cuba instill a deep sense of
community and connection, often accompanied by an emotional intensity that makes
each recognition meaningful. Understanding this shared sentiment, I choose to embrace
all of you collectively in this paragraph without writing names. It’s a way to ensure that
no one feels overlooked. This is my heartfelt acknowledgment to all of you, my friends.

Last but never least, to my family in Cuba, especially to “mi abuela Mary”. Family
values led me to this successful journey.

v

Contents

List of Papers iii

Acknowledgement v

Contents 1

I Thesis 5

1 Introduction 7
1.1 WebAssembly . 8
1.2 Predictability in WebAssembly ecosystems 10
1.3 Problem statements 11
1.4 Approach: Software Diversification 11
1.5 Summary of research papers 12
1.6 Thesis outline . 14

2 Background and state of the art 15
2.1 WebAssembly . 15

2.1.1 From source code to WebAssembly 16
2.1.2 WebAssembly’s binary format 19
2.1.3 WebAssembly’s runtime 20
2.1.4 WebAssembly’s control-flow 22
2.1.5 Security and reliability for WebAssembly 23
2.1.6 Open challenges 24

2.2 Software diversification 25
2.2.1 Automatic generation of software variants 25
2.2.2 Equivalence Checking 28
2.2.3 Variants deployment. 29

1

2.2.4 Measuring Software Diversification 30
2.2.5 Offensive or Defensive assessment of diversification . . . 31

2.3 Open challenges for Software Diversification 32

3 Automatic Software Diversification for WebAssembly 35
3.1 CROW: Code Randomization of WebAssembly 36

3.1.1 Enumerative synthesis 36
3.1.2 Constant inferring 38
3.1.3 Exemplifying CROW 39

3.2 MEWE: Multi-variant Execution for WebAssembly 41
3.2.1 Multivariant call graph. 41
3.2.2 Exemplifying a Multivariant binary 42

3.3 WASM-MUTATE: Fast and Effective Binary Diversification for
WebAssembly . 45
3.3.1 WebAssembly Rewriting Rules 46
3.3.2 E-Graph traversal 47
3.3.3 Exemplifying WASM-MUTATE 48

3.4 Comparing CROW, MEWE, and WASM-MUTATE 50
3.4.1 Security applications 53

4 Assessing Software Diversification for WebAssembly 55
4.1 Offensive Diversification: Malware evasion. 55

4.1.1 Cryptojacking defense evasion 56
4.1.2 Methodology 57
4.1.3 Results 59

4.2 Defensive Diversification: speculative side-channel protection . . . 62
4.2.1 Threat model: speculative side-channel attacks 63
4.2.2 Methodology 64
4.2.3 Results 65

4.3 Conclusions . 70

5 Conclusions and Future Work 71
5.1 Summary of technical contributions 71
5.2 Key results of the thesis 72
5.3 Future Work . 73

5.3.1 Data augmentation for Machine Learning on WebAssembly
programs 73

5.3.2 Improving WebAssembly malware detection via
canonicalization 74

5.3.3 Oneshot Diversification 75

References 77

II Included papers 93

WebAssembly Diversification for Malware Evasion 97

WASM-MUTATE: Fast and Effective Binary Diversification for WebAssembly 115

CROW: Code Diversification for WebAssembly 137

Multi-Variant Execution at the Edge 151

Superoptimization of WebAssembly Bytecode 165

Scalable Comparison of JavaScript V8 Bytecode Traces 171

Part I

Thesis

5

1
INTRODUCTION

Jealous stepmother and sisters; magical aid by a beast; a marriage won
by gifts magically provided; a bird revealing a secret; a recognition by aid
of a ring; or show; or what not; a dénouement of punishment; a happy
marriage - all those things, which in sequence, make up Cinderella, may
and do occur in an incalculable number of other combinations.

— MR. Cox 1893, Cinderella: Three hundred and forty-five variants [1]

The first web browser, Nexus, made its appearance in 1990 [2]. At its
inception, web browsing consisted solely of retrieving and displaying
small, static text pages. With Nexus, users could access for the first

time interlinked hypertext documents, so-called HTML pages. However, the
escalating computing power of devices, the proliferation of the internet, the
valuation of internet-based companies, and the demand for more engaging user
experiences gave rise to the concept of executing code in conjunction with web
pages. In 1995, the Netscape browser revolutionized this concept by introducing
JavaScript [3], a programming language that allowed code execution on the client-
side. Interactive web content immediately highlighted benefits: unlike classical
native software, web applications do not require installation, are always up-to-
date, and are accessible from any device with a web browser. Significantly, since
the advent of Netscape, all browsers offer JavaScript support. In the present
day, the majority of web pages incorporate not only HTML but also JavaScript
code, which is executed on client computers. Consequently, over the past several
decades, web browsers have evolved into intricate systems capable of running
comprehensive applications, such as video and audio players, animation creators,
and PDF document renderers.

Despite being the main scripting language in modern web browsers, JavaScript
has limitations due to its unique language characteristics [4]. Each JavaScript
engine requires the parsing and recompiling of the JavaScript code, thereby
causing substantial overhead. In practice, the process of parsing and compiling
JavaScript code constitutes the majority of website load times1. Additionally,
JavaScript presents security issues, including the lack of memory isolation, which
potentially enables information extraction from other processes [5, 6]. Numerous

1https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast

7

https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast

attempts have been made to port other languages, offering different guarantees,
to the browser execution as alternatives to JavaScript. For instance, Java applets
emerged on web pages in the late 90s, enabling the execution of Java bytecode on
the client side2. Likewise, Microsoft proposed ActiveX in 19963, and Silverlight
in 20074. However, these attempts either failed to persist or experienced low
adoption, primarily due to security issues and the absence of consensus among
the community of browser vendors.

1.1 WebAssembly

Importantly, in 2014, Alon Zakai et al. proposed the Emscripten tool5.
Emscripten employs a strict subset of JavaScript, asm.js, to facilitate the
compilation of low-level code such as C to JavaScript. Asm.js was included
as an LLVM backend6. This strategy offered the advantages of the ahead-
of-time optimizations from LLVM, resulting in performance gains on browser
clients7 when compared to standard JavaScript code. Asm.js outperformed
JavaScript because it restricted language features to those that could be
optimized in the LLVM pipeline. Moreover, it eliminated most of the language’s
dynamic characteristics, limiting it to numerical types, top-level functions, and
one large array in memory accessed directly as raw data. Asm.js proved
that client-side code could be enhanced with the appropriate language design
and standardization. In response to persistent JavaScript-related issues, the
formalization and creation of a formal specification following asm.js laid the
groundwork for the emergence of WebAssembly as a fast, low-level, portable
bytecode for browsers. In 2015, the Web Consortium (W3C) standardized
WebAssembly. As a result, WebAssembly bytecode became the fourth official
language for the web.

The first distinction from earlier attempts to port non-JavaScript languages
to the web lies in WebAssembly’s initial design. Unlike its predecessors,
WebAssembly was crafted to supplement JavaScript in the browser as a platform-
agnostic, low-level bytecode, rather than to completely replace it. Its primary
goal was to replace computing-intensive JavaScript code in contemporary web
applications. Additionally, WebAssembly is the inaugural major language that
used formal specification and verification right from the design inception [7, 8].

Importantly, WebAssembly provides a platform for compiling several legacy
code applications, like those written in C/C++. For example, LLVM includes

2https://www.oracle.com/java/technologies/javase/9-deprecated-features.html
3https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/pr

ess/1996/mar96/activxpr.mspx
4https://www.microsoft.com/silverlight/
5https://emscripten.org/
6http://asmjs.org/spec/latest/
7https://hacks.mozilla.org/2015/03/asm-speedups-everywhere/

https://www.oracle.com/java/technologies/javase/9-deprecated-features.html
https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/press/1996/mar96/activxpr.mspx
https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/press/1996/mar96/activxpr.mspx
https://www.microsoft.com/silverlight/
https://emscripten.org/
http://asmjs.org/spec/latest/
https://hacks.mozilla.org/2015/03/asm-speedups-everywhere/

WebAssembly as a backend since release 7.1.0 published in May 20198.
WebAssembly paves the way for web applications to undertake roles traditionally
reserved for native desktop applications, having the potential to transform web
software as we know it. For example, applications such as AutoCAD and Adobe
Photoshop have been ported to WebAssembly9.

The WebAssembly specification embodies several language design principles
that pave the way for its extension beyond the web ecosystem. For instance,
the architecture of WebAssembly guarantees self-containment. Inherently,
WebAssembly binaries are prohibited from accessing memory beyond their
own designated space, thereby amplifying security via Software Fault Isolation
(SFI) policies [9]. Consequently, research has highlighted the benefits of
integrating WebAssembly as an intermediate layer in contemporary cloud
platforms [10]. In particular, the employment of WebAssembly binaries improves
startup times and optimizes memory consumption, outperforming virtualization
and containerization [11]. Furthermore, compared to virtual machines and
containers, WebAssembly programs are more compact, highlighting their efficient
deployment, especially when network transportation is a consideration. The
methodology for standalone WebAssembly execution was formalized in 2019 when
the Bytecode Alliance proposed the WebAssembly System Interface (WASI)10.
WASI standardizes the execution of WebAssembly via a POSIX-like interface
protocol, thereby facilitating the execution of WebAssembly closer to operating
systems. This standardization enables WebAssembly to function outside web
browsers, extending its use to cloud environments and IoT devices [12, 13].

The extensive applicability and rapid adoption of WebAssembly have
prompted requests for additional features. However, these demands do not
always align with the initial specifications. For extending WebAssembly
with a new proposal, it must satisfy particular criteria. A new proposal
needs a formal specification and, at least two implementations, e.g., two
different WebAssembly engines. This approach allows for swift incorporation
of new formalization and features via the so-called “evergreen method” while
maintaining the original WebAssembly specification intact. Since the inception
of WebAssembly, numerous extensions have been proposed for standardization.
For instance, the SIMD proposal enables the execution of vectorized instructions
in WebAssembly. After approval, new extensions remain optional, ensuring
that the core WebAssembly version remains 1.0. The ongoing development of
WebAssembly provides avenues for research and development. However, it also
gives rise to security concerns within the ecosystem, as new threats emerge.

8https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0
9https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R6

9lw
10https://github.com/WebAssembly/WASI

https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0
https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R69lw
https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R69lw
https://github.com/WebAssembly/WASI

1.2 Predictability in WebAssembly ecosystems

Over the past three decades, web browsers and JavaScript have had significant
evolution, leading to a myriad of implementations. However, only Firefox,
Chrome, Safari, and Edge are typically used on devices. Web page resources,
including those containing WebAssembly binaries, are primarily served from
centralized datacenters [14]. This situation creates a highly predictable
ecosystem, where potential attackers can predict ecosystem behavior, from the
browser to the code it executes. This predictability may be exploited to launch
large-scale attacks, as predictability inherently increases the chances of successful
attacks [15]. For example, if one-quarter of all devices operate the same code in
the same browser, a single flaw could impact millions of devices in the same way
[16].

The aforementioned issue is exacerbated when considering the adoption
of WebAssembly by edge-cloud computing platforms to provide services. In
addition to browser clients, thousands of edge devices operate millions of
identical WebAssembly instantiations per second [17]. This suggests that a single
vulnerable WebAssembly binary in an edge network node could render every node
identically susceptible due to the binary replication occurring on each node. A
potential attacker could compromise all edge nodes concurrently, implying that
a single distributed WebAssembly binary could trigger a global attack11.

We devise two scenarios where predictability affects WebAssembly ecosystems.
First, the predictability of execution engines and WebAssembly binaries
themselves facilitates side-channel and memory attacks. Despite the praise for
WebAssembly’s security, particularly its design that prohibits programs from
accessing data beyond their own memory, it is not immune to such vulnerabilities.
For example, Rokicki et al. highlighted the potential risk of port contention side-
channel attacks using WebAssembly malware in browsers [18]. In such cases,
mitigations often involve hardware and operating-level changes, which are not
always feasible. Moreover, attacks within the memory of WebAssembly itself are
feasible [19, 20] as innate vulnerabilities can exist in WebAssembly binaries due
to flaws in the source code. Besides, the lack of stack-smashing protections could
result in unnoticed overflows and crashes during WebAssembly executions [21].
In standalone deployments, Genkin et al. demonstrated the possibility of data
extraction via cache-timing side channels in WebAssembly [22]. In a similar vein,
Maisuradze and Rossow exhibited speculative execution attacks on WebAssembly
binaries [23].

Second, the defenses for identifying and addressing vulnerabilities are
generally predictable. In particular, this predictability can be manipulated by
malicious actors to create programs aimed at deceiving these defense mechanisms.
For example, malware can be distributed via WebAssembly binaries. The

11https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-befo
re-it-became-a-problem

https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem

capability of WebAssembly for efficient computation makes it an appealing target
for misuse by cybercriminals, especially for cryptojacking [24]. The challenge in
identifying and eliminating cryptojacking enables it to function persistently on
a victim’s computer, constantly utilizing resources and generating income for
the attacker [25]. Several techniques, such as static analysis, dynamic analysis,
and even sophisticated machine learning methods, are successfully applied to
detect WebAssembly malware [26, 27, 28, 29, 30, 31]. However, most of these
research works do not consider the predictability of an attacker knowing that a
WebAssembly program is not treated as obfuscated.

1.3 Problem statements

To sum up, predictability and potential vulnerabilities form a harmful
combination. This principle does not exclude WebAssembly and its ecosystem.
The effect of exploiting a single vulnerability in WebAssembly could prove
catastrophic, given all devices running the same WebAssembly binaries could be
affected. On the other hand, WebAssembly malware pose a severe threat. Present
defenses may not adequately protect against them, as they have not been designed
to manage situations outside predictable scenarios, such as obfuscation. Besides,
mitigations might require hardware and operating-level changes, which are not
always feasible. In this dissertation, we tackle the subsequent two problems:

P1 The WebAssembly ecosystem and binaries are susceptible to
attacks, especially those from side-channel threats.

P2 WebAssembly malware presents a substantial threat. Predictability
leads to the assumption that malware is typically considered unique.

1.4 Approach: Software Diversification

This dissertation introduces tools, strategies, and methodologies designed to
address the previously enunciated problems via Software Diversification. Software
Diversification is a security strategy that involves identifying, developing, and
deploying program variants of a given original program [32]. Pioneers in this field,
Cohen et al. [33] and Forrest et al. [34], proposed enhancing software diversity
through code transformations. Their proposal recommended the creation of
diverse program variants, maintaining their original functionalities. Software
Diversification aims to lessen potential vulnerabilities by enhancing behavior
unpredictability in observabilities used to conduct attacks, e.g., side-channels.

Eichin et al. underscored the practical benefits of diversification [35] early
in 1989. They illustrated how diversification limited the exploitation of the
Morris Worm to a few machines. From an attacker’s perspective, the diversity of
target systems rendered them unpredictable. Therefore, Software Diversification
effectively removes vulnerabilities. For WebAssembly, Software Diversification

Contribution Research papers
I II III IV

[36] [37] [38] [39]
C1 Offensive diversification technique
C2 Defensive diversification technique
C3 Extensive experimental evaluation

Table 1.1: Mapping between contributions and research papers.

could bolster browsers and standalone engines by providing diversified program
variants, making it harder for attackers to exploit vulnerabilities, addressing
P1. Furthermore, it could increase the accuracy of WebAssembly malware
detectors and WebAssembly analysis tools in general, addressing P2. However,
the implementation of Software Diversification in WebAssembly is still largely
unexplored. In light of this, we offer the following contributions within the context
of Software Diversification, which are not necessarily mutually exclusive.

C1 Offensive Diversification Technique: In order to address P2, we
evaluate the potential for using generated WebAssembly program variants
for offensive purposes. Our research includes experiments where we
test the resilience of WebAssembly analysis tools against these generated
variants. Furthermore, we offer insights into which types of program variants
practitioners should prioritize to improve WebAssembly analysis tools.

C2 Defensive Diversification Technique: In order to address P1, we assess
how diversified WebAssembly program variants could be used for defensive
purposes. We provide empirical insights about the practical usage of the
generated variants in preventing attacks.

C3 Extensive experimental evaluation: For each proposed technique we
provide an artifact implementation and conduct experiments to assess its
capabilities. The artifacts are publicly available. The protocols and results
of assessing the artifacts provide guidance for future research on P1 and P2.

1.5 Summary of research papers

This compilation thesis comprises the following research papers. In Table 1.1 we
map the contributions to our research papers.

I: CROW: Code randomization for WebAssembly bytecode.
Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry,
Martin Monperrus
Workshop on Measurements Measurements, Attacks, and Defenses for the
Web (MADWeb 2021), 12 pages
https://doi.org/10.14722/madweb.2021.23004

Summary: In this paper, we introduce the first entirely automated workflow
for diversifying WebAssembly binaries. We present CROW, an open-source
tool that implements Software Diversification through enumerative synthesis.
We assess the capabilities of CROW and examine its application on real-
world, security-sensitive programs. In general, CROW can create thousands
of statically diverse variants. Furthermore, we illustrate that the generated
variants exhibit different behaviors at runtime.

II: Multivariant execution at the Edge.
Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit
Baudry
Workshop on Moving Target Defense (MTD 2022), 12 pages
https://dl.acm.org/doi/abs/10.1145/3560828.3564007

Summary: In this paper, we synthesize functionally equivalent variants
of deployed edge services. Service variants are encapsulated into a single
multivariant WebAssembly binary. A random variant is selected and executed
each time a function is invoked. Execution of multivariant binaries occurs
on the global edge platform provided by Fastly, as part of a research
collaboration. We demonstrate that multivariant binaries present a diverse
range of execution traces throughout the entire edge platform, distributed
worldwide, effectively creating a moving target defense.

III: WASM-MUTATE: Fast and efficient Software Diversification for
WebAssembly.
Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, Benoit
Baudry
Computers & Security, 2024, 20 pages
https://www.sciencedirect.com/science/article/pii/S01674048240
00324

Summary: This paper introduces WASM-MUTATE, a compiler-agnostic
WebAssembly diversification engine. The engine is designed to swiftly
generate functionally equivalent yet behaviorally diverse WebAssembly
variants by randomly traversing e-graphs. E-graphs are specific graph

https://doi.org/10.14722/madweb.2021.23004
https://dl.acm.org/doi/abs/10.1145/3560828.3564007
https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://www.sciencedirect.com/science/article/pii/S0167404824000324

data structures for representing and applying rewriting rules. We
show that WASM-MUTATE can generate tens of thousands of unique
WebAssembly variants in minutes. Importantly, WASM-MUTATE can
safeguard WebAssembly binaries from timing side-channel attacks, such as
Spectre.

IV: WebAssembly Diversification for Malware evasion.
Javier Cabrera-Arteaga, Tim Toady, Martin Monperrus, Benoit Baudry
Computers & Security, Volume 131, 2023, 17 pages

Summary: WebAssembly, while enhancing rich applications in browsers,
also proves efficient in developing cryptojacking malware. Protective
measures against cryptomalware have not factored in the potential use
of evasion techniques by attackers. This paper delves into the potential
of automatic binary diversification in aiming WebAssembly cryptojacking
detectors’ evasion. We provide proof that our diversification tools can
generate variants of WebAssembly cryptojacking that successfully evade
VirusTotal and MINOS. We further demonstrate that these generated variants
introduce minimal performance overhead, thus verifying binary diversification
as an effective evasion technique.

1.6 Thesis outline

This dissertation comprises two parts as a compilation thesis. Part one
summarises the research papers included within, which is partially rooted in the
author’s licentiate thesis [40]. Chapter 2 offers a background on WebAssembly
and the latest advancements in Software Diversification. Chapter 3 delves into
our technical contributions. Chapter 4 exhibits two use cases applying our
technical contributions. Chapter 5 concludes the thesis and outlines future
research directions. The second part of this thesis incorporates all the papers
discussed in part one.

2
BACKGROUND AND
STATE OF THE ART

You must have a map, no matter how rough. Otherwise you wander all
over the place.

— J.R.R. Tolkien

This chapter discusses the state-of-the-art in the areas of WebAssembly and
Software Diversification. In Section 2.1 we discuss WebAssembly, focusing
on its design and security model. Besides, we discuss the current state-

of-the-art of WebAssembly research. In Section 2.2 we discuss related works in
the area of Software Diversification. Moreover, we delve into the open challenges
regarding the diversification of WebAssembly programs.

2.1 WebAssembly

The W3C publicly announced the WebAssembly (Wasm) language in 2017 as
the fourth scripting language supported by all major web browser vendors.
WebAssembly is a binary instruction format for a stack-based virtual machine
and was officially consolidated by the work of Haas et al [7]. It is designed to be
fast, portable, self-contained, and secure.

Moreover, WebAssembly has been evolving outside web browsers since its
first announcement. Previous works demonstrated that using WebAssembly as
an intermediate layer is better in terms of startup time and memory usage than
containerization and virtualization [10, 11]. Consequently, in 2019, the Bytecode
Alliance proposed WebAssembly System Interface (WASI) [41]. WASI pioneered
the execution of WebAssembly with a POSIX system interface protocol, making it
possible to execute Wasm closer to the underlying operating system. Therefore,
it standardizes the adoption of WebAssembly in heterogeneous platforms [42],
i.e., IoT and Edge computing [43, 44].

Currently, WebAssembly serves a variety of functions in browsers, ranging
from gaming to cryptomining [45]. Other applications include text processing,
visualization, media processing, programming language testing, online gambling,
bar code and QR code fast reading, hashing, and PDF viewing. On the backend,
WebAssembly notably excels in short-running tasks. As such, it is particularly

15

suitable for Function-as-a-Service (FaaS) platforms [12] like Cloudflare and Fastly.
The subsequent text in this chapter focuses specifically on WebAssembly version
1.0. However, the tools, techniques, and methodologies discussed also apply to
future WebAssembly versions.

2.1.1 From source code to WebAssembly

WebAssembly programs are compiled from source languages like C/C++, Rust,
or Go ahead of time, which means that Wasm binaries can benefit from the
optimizations of the source language compiler. The resulting WebAssembly
program is like a traditional shared library, containing instruction codes, symbols,
and exported functions. A host environment is in charge of complementing the
Wasm program, such as providing external functions required for execution within
the host engine. For instance, functions for interacting with an HTML page’s
DOM are imported into the Wasm binary when invoked from JavaScript code in
the browser.

In Listing 2.1 and Listing 2.2, we present a Rust program alongside its
corresponding WebAssembly binary. The Rust program in Listing 2.1 iteratively
calculates the Fibonacci sequence up to a given number that comes from the host
engine. The code in the program encompasses various elements such as vector
allocations, external function usage, and a function definition that includes a
loop, conditionals, function calls, and memory accesses. The Wasm code shown
in Listing 2.2 is simplified in its textual format, known as WAT1. The function
prototype in lines 4 and 5 of Listing 2.1 are converted into an imported function,
as seen in lines 8 and 9 of Listing 2.2. The fibonacci function, spanning lines
7 to 20 in Listing 2.1, is compiled into a Wasm function covering lines 14 to 31
in Listing 2.2. Within this function, the translation of various Rust language
constructs into Wasm can be observed. For instance, the for loop found in line
14 of Listing 2.1 is mapped to a block structure in lines 17 to 31 of Listing 2.2.
The breaking condition of the loop is transformed into a conditional branch, as
depicted in line 23 of Listing 2.2. In this scenario, the function yields the final
set value in the local variable. Note that for optimization purposes, the loop
concludes by returning the result value, instead of returning post-completion of
the loop.

1The WAT text format is primarily designed for human readability and for low-level manual
editing.

1 ...
2 // Imported form host
3 extern "C" {
4 fn log(s: &str);
5 fn get_input () -> usize; }
6
7 fn fibonacci(n: usize) -> i32 {
8 // Iterative fibonacci
9 // Create a vector of size n+1

10 let mut fibo_result = vec! [0; n + 1];
11 // Set ith 0 and 1
12 fibo_result [0] = 1;
13 fibo_result [1] = 1;
14 for i in 2..=n {
15 // f[i] = f[i-1] + f[i-2]
16 fibo_result[i] = fibo_result[i - 1] + fibo_result[i - 2];
17 }
18 // Return the last element
19 return fibo_result[n];
20 }
21 // Pub to export the function
22 pub fn main() {
23 // Get the input from the user
24 let ith = get_input ();
25 // Calculate the fibonacci
26 let fib = fibonacci(get_input ());
27 // Print the result in the host imported function
28 log(& format!("{}",fib));
29 }

Listing 2.1: Example Rust program which includes external function usage,
a function definition featuring a loop, function calls, imported functions, and
memory accesses.
There are several compilers that turn source code into WebAssembly binaries.

For example, LLVM compiles to WebAssembly as a backend option since its 7.1.0
release in early 20192, supporting a diverse set of frontend languages like C/C++,
Rust, Go, and AssemblyScript3. Significantly, a study by Hilbig [45] reveals that
70% of WebAssembly binaries are generated using LLVM-based compilers. The
main advantage of using LLVM is that it provides a modular and state-of-the-
art optimization infrastructure for WebAssembly binaries. Today, Emscripten4 is
the most frequently used tool for porting C/C++ code to the Web as a drop-in
replacement for a standard compiler like gcc or clang. The main advantage of
Emscripten is that it provides a complete toolchain for compiling C/C++ code
to WebAssembly, including the automatic generation of the external functions
for interacting with a Web host environment. Recently, the Kotlin Multiplatform
framework5 has incorporated WebAssembly as a compilation target, enabling
the compilation of Kotlin code to WebAssembly. Similarly, the Cheerp6 project
proposes a Java Virtual Machine(JVM) fully ported to WebAssembly, supporting
Java applications and legacy applets in the browser.

2https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0
3A subset of the TypeScript language
4https://emscripten.org/docs/tools_reference/emcc.html
5https://kotlinlang.org/docs/wasm-overview.html
6https://labs.leaningtech.com/blog/cheerpj-3-deep-dive

https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0
https://emscripten.org/docs/tools_reference/emcc.html
https://kotlinlang.org/docs/wasm-overview.html
https://labs.leaningtech.com/blog/cheerpj-3-deep-dive

1 ; WebAssembly magic bytes (\0asm) and version (1.0) ;
2 (module
3 ...
4 ; Type section: 0x01 0x00 0x00 0x00 0x13 ... ;
5 (type (;type index 0;) (func (param i32 i32)))
6 ...
7 ; Import section: 0x02 0x00 0x00 0x00 0x57 ... ;
8 (import "__wbg__" "__wbg_log" (func (;1;) (type 0)))
9 (import "__wbg__" "__wbg_getinput" (func (;2;) (type 8)))

10 ...
11 ; Custom section: 0x00 0x00 0x00 0x00 0x7E ;
12 (@custom "name" "...")
13 ...
14 (func (;func index 40;) (type 1) (param i32) (result i32)
15 (local i32 i32 i32 i32 i32) ;local variables;
16 ...
17 loop ; label = @1 ;
18 ...
19 i32.eqz
20 if ; label = @2 Compare the top of the stack ;
21 ...
22 local.get 0
23 return ; Return the last element which is saved in local 0 ;
24 end
25 ...
26 block ;label = @2 ;
27 ...
28 i32.store ; Store the fib value in the mem assigned to the

↪→ result array;
29 br 1 (;@1;) ;Continue the loop;
30 end
31 end)
32 ...
33 (func (;44;) (type 8) (result i32)
34 ...
35 call 2 ; Calling the imported function to get input ;
36 i32.store ; Store the input in memory ;
37 ...
38 (func (;45;) (type 7)
39 (local i32 i32 i32)
40 ...
41 call 44
42 call 40 ; Calling fibo function ;
43 i32.store offset =20
44 ...
45 (table (;0;) 33 33 funcref)
46 ; Memory section: 0x05 0x00 0x00 0x00 0x03 ... ;
47 (memory (;0;) 17)
48 ; Global section: 0x06 0x00 0x00 0x00 0x11.. ;
49 (global (;global index 0;) (mut i32 ;mut global;) (i32.const 1048576))
50 ...
51 ; Export section: 0x07 0x00 0x00 0x00 0x72 ... ;
52 (export "memory" (memory 0))
53 (export "fibo" (func 40))
54 (export "main" (func 45))
55 ...
56 ; Data section: 0x0d 0x00 0x00 0x03 0xEF ... ;
57 (data (;data segment index 0;) (i32.const 1048576) "invalid args ...")
58 ...
59 ; Custom section: 0x00 0x00 0x00 0x00 0x2F ;
60 (@custom "producers" "...")

Listing 2.2: Refer to Listing 2.1 for the Rust code example. This example
showcases the translation from Rust to Wasm. For clarity, we have marked
elements and portions of the WebAssembly binary as comments.

A recent trend in the WebAssembly ecosystem involves porting various
programming languages by converting both the language’s engine or interpreter
and the source code into a WebAssembly program. For example, Javy7

encapsulates JavaScript code within the QuickJS interpreter, demonstrating
that direct source code conversion to WebAssembly isn’t always required. If
an interpreter for a specific language can be compiled to WebAssembly, it
allows for the bundling of both the interpreter and the language into a single,
isolated WebAssembly binary. Similarly, Blazor8 facilitates the execution of .NET
Common Intermediate Language (CIL) in WebAssembly binaries for browser-
based applications. However, packaging the interpreter and the code in one
single standalone WebAssembly binary is still immature and faces challenges.
For example, the absence of JIT compilation for the “interpreted” code makes it
less suitable for long-running tasks [46, 47]. On the other hand, it proves effective
for short-running tasks, particularly those executed in Edge-Cloud computing
platforms.

2.1.2 WebAssembly’s binary format
The Wasm binary format is close to machine code and already optimized, being
a consecutive collection of sections. In Figure 2.1 we show the binary format
of a Wasm section. A Wasm section starts with a 1-byte section ID, followed
by a 4-byte section size, and concludes with the section content, which precisely
matches the size indicated earlier. A WebAssembly binary contains sections of 13
types, each with a specific semantic role and placement within the module. For
instance, the Custom Section stores metadata like the compiler used to generate
the binary, while the Type Section contains function signatures that serve to
validate the Function Section. The Import Section lists elements imported from
the host, and the Function Section details the functions defined within the binary.
Other sections like Table, Memory, and Global Sections specify the structure
for indirect calls, unmanaged linear memories, and global variables, respectively.
Export, Start, Element, Code, Data, and Data Count Sections handle aspects
ranging from declaring elements for host engine access to initializing program
state, declaring bytecode instructions per function, and initializing linear memory.
Each of these sections must occur only once in a binary and can be empty. For
clarity, we also annotate sections as comments in the Wasm code in Listing 2.2.

A WebAssembly binary can be processed efficiently due to its organization
into a contiguous array of sections. For instance, this structure permits compilers
to boost the compilation process through parallel parsing. Moreover, the Code
Section’s instructions are further compacted through the use of the LEB1289

encoding. Consequently, Wasm binaries are not only fast to validate and compile,
but also swift to transmit over a network.

7https://github.com/bytecodealliance/javy
8https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
9https://en.wikipedia.org/wiki/LEB128

https://github.com/bytecodealliance/javy
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://en.wikipedia.org/wiki/LEB128

ID1 Size

i i + 1 i + 9 i + 9 + SIze... ...

ID2Content

Figure 2.1: Memory byte representation of a WebAssembly binary section, starting with
a 1-byte section ID, followed by an 8-byte section size, and finally the section content.

2.1.3 WebAssembly’s runtime
The WebAssembly’s runtime characterizes the behavior of WebAssembly
programs during execution. This section describes the main components of the
WebAssembly runtime, namely the execution stack, functions, memory model,
and execution process. These components are crucial for understanding both the
WebAssembly’s control-flow and the analysis of WebAssembly binaries.

Execution Stack: At runtime, WebAssembly engines instantiate a
WebAssembly module. This module is a runtime representation of a loaded
and initialized WebAssembly binary described in Section 2.1.2. The primary
component of a module instance is its Execution Stack. The Execution Stack
stores typed values, labels, and control frames. Labels manage block instruction
starts and loop starts. Control frames manage function calls and function returns.
Values within the stack can only be static types. These types include i32 for
32-bit signed integers, i64 for 64-bit signed integers, f32 for 32-bit floats, and
f64 for 64-bit floats. Abstract types such as classes, objects, and arrays are
not supported natively. Instead, these types are abstracted into primitive types
during compilation and stored in linear memory.

Functions: At runtime, WebAssembly functions are closures over the module
instance, grouping locals and function bodies. Locals are typed variables that
are local to a specific function invocation. A function body is a sequence of
instructions that are executed when the function is called. Each instruction either
reads from the execution stack, writes to the execution stack, reads from the linear
memory, writes to the linear memory, reads a global, writes a global or modifies
the control-flow of the function. Recalling the example WebAssembly binary, the
local variable declarations and typed instructions that are evaluated using the
stack can be appreciated between Line 15 and Line 19 in Listing 2.2. When an
instruction reads its operands from the stack, it pushes back the result. Notice
that, numeric instructions are annotated with their corresponding type.

Memory model: A WebAssembly module instance incorporates three key
types of memory-related components: linear memory, local variables and global
variables. These components can either be managed solely by the host engine
or shared with the WebAssembly binary itself. This division of responsibility is
often categorized as managed and unmanaged memory [20]. Managed refers to
components that are exclusively modified by the host engine at the lowest level,

e.g. when the WebAssembly binary is JITed, while unmanaged components can
also be altered through WebAssembly opcodes. First, modules may include a
linear memory instance, which is a contiguous array of bytes. This linear memory
is accessed using 32-bit integers (i32) and is shareable only between the initiating
engine and the WebAssembly module instance. Generally, the linear memory
is considered to be unmanaged, e.g., line 28 of Listing 2.2 shows an explicit
memory access opcode. Second, there are global instances, which are variables
accompanied by values and mutability flags (see example in line 49 of Listing 2.2).
These globals are managed by the host engine, which controls their allocation and
memory placement completely oblivious to the WebAssembly binary scope. They
can only be accessed via their declaration index, prohibiting dynamic addressing.
Third, local variables are mutable and specific to a given function instance (e.g.,
line 15 and line 22 in Listing 2.2). They are accessible only through their index
relative to the executing function and are part of the data managed by the host
engine.

WebAssembly module execution: While a WebAssembly binary could be
interpreted, the most practical approach is to JIT compile it into machine code
[48]. The main reason is that WebAssembly is optimized and closely aligned
with machine code, leading to swift JIT compilation for execution. Browser
engines such as V810 and SpiderMonkey11 use this strategy when executing
WebAssembly binaries in browser clients. In practice, browsers initially employ
a baseline compiler to ensure the rapid availability of incoming WebAssembly
binaries. Simultaneously, an optimizing compiler operates in the background.
Consequently, the first generated machine code is eventually supplanted by
the optimized version. Once JITed, the WebAssembly binary operates within
a sandboxed environment, accessing the host environment exclusively through
imported functions. This sandboxing follows the Software Fault Isolation (SFI)
guarantee, meaning that a WebAssembly program cannot arbitrarily access code
or data of its runtime.

WebAssembly standalone engines: While initially intended for browsers,
WebAssembly has undergone significant evolution, primarily due to WASI [41].
WASI establishes a standardized POSIX-like interface for interactions between
WebAssembly modules and host environments. Compilers can generate
WebAssembly binaries that implement WASI, which allows execution in
standalone engines. These binaries can then be executed by standalone engines
across a variety of environments, including the cloud, servers, and IoT devices
[49, 48]. Similarly to browsers, these engines often translate WebAssembly into
machine code via JIT compilation, ensuring a sandboxed execution process.

10https://chromium.googlesource.com/v8/v8.git
11https://spidermonkey.dev/

https://chromium.googlesource.com/v8/v8.git
https://spidermonkey.dev/

Standalone engines such as WASM312, Wasmer13, Wasmtime14, WAVM15, and
Sledge [50] have been developed to support both WebAssembly and WASI.

2.1.4 WebAssembly’s control-flow
A WebAssembly function groups instructions into blocks, with the function’s
entrypoint acting as the root block. In contrast to conventional assembly code,
control-flow structures in Wasm leap between block boundaries rather than
arbitrary positions within the code, effectively prohibiting gotos to random
code positions. Each block may specify the needed execution stack state before
execution as well as the resultant execution stack state once its instructions have
been executed. Typically, the execution stack state is the quantity and numeric
type of values on the stack. This stack state is used to validate the binary during
compilation and to ensure that the stack is in a valid state before the execution
of the block’s instructions. Blocks in Wasm are explicit (see instructions block
and end in lines 16 and 34 of Listing 2.2), delineating where they start and end.
By design, a block cannot reference or execute code from external blocks.

During runtime, WebAssembly break instructions can only jump to one of its
enclosing blocks. Breaks, except for those within loop constructions, jump to the
block’s end and continue to the next immediate instruction. For instance, after
line 31 of Listing 2.2, the execution would proceed to line 32. Within a loop,
the end of a block results in a jump to the block’s beginning, thus restarting the
loop. For example, if line 29 of Listing 2.2 evaluates as false, the next instruction
to be executed in the loop would be line 18. Listing 2.3 provides an example for
better understanding, comparing a standard block and a loop block in a Wasm
function.

block
block

br 1 ; Jump instructions
are annotated with the
depth of the block they
jump to;

end
end
...

loop
...
br 0 ;first -order break;
...

end ; end instructions break
the block and jump to next
instruction;

...

Listing 2.3: Example of breaking a block and a loop in WebAssembly.

Each break instruction includes the depth of the enclosing block as an
operand. This depth is used to identify the target block for the break instruction.
For example, in the leftmost part of the previously discussed listing, a break
instruction with a depth of 1 would jump past two enclosing blocks. This design

12https://github.com/wasm3/wasm3
13https://wasmer.io/
14https://github.com/bytecodealliance/wasmtime
15https://github.com/WAVM/WAVM

https://github.com/wasm3/wasm3
https://wasmer.io/
https://github.com/bytecodealliance/wasmtime
https://github.com/WAVM/WAVM

hardens the rewriting of WebAssembly binaries. For instance, if an outer block
is removed, the depth of the break instructions within nested blocks must be
updated to reflect the new enclosing block depth. This is a significant challenge for
rewriting tools, as it requires the analysis of the control-flow graph to determine
the enclosing block depth for each break instruction.

Notice that, WebAssembly’s control-flow design adheres to a Control Flow
Integrity (CFI) policy. CFI is a security mechanism that limits a program’s
control-flow to a specified set of valid targets, thereby preventing arbitrary jumps
[51]. Thus, even when a WebAssembly program originates from potentially
untrustworthy sources, CFI policy theoretically guarantees the prevention of
arbitrary jumps to random code locations.

2.1.5 Security and reliability for WebAssembly
The WebAssembly ecosystem’s expansion needs robust tools to ensure its
security and reliability. Numerous tools, employing various strategies to detect
vulnerabilities in WebAssembly programs, have been created to meet this
need.This section reviews the most relevant works in this field. We group them
by the technique they employ.

Static analysis: SecWasm [52] uses information control-flow checking to
identify secrecy leaking in WebAssembly binaries. Similarly, Wasmati [53]
employs code property graphs for this purpose. Wasp [54] leverages concolic
execution to identify potential vulnerabilities in WebAssembly binaries. CT-
Wasm [55], verifies the constant time implementation of cryptographic algorithms
in WebAssembly. Similarly, Vivienne applies relational symbolic execution
to WebAssembly binaries in order to reveal vulnerabilities in cryptographic
implementations [56]. While these tools emphasize specific strategies, others
adopt a more holistic approach. For example, both Wassail [57] and WasmA [58]
provide a comprehensive static analysis framework for WebAssembly binaries.

Dynamic analysis: Dynamic analysis involves tools such as TaintAssembly
[59], which conducts taint analysis on WebAssembly binaries. Furthermore,
Stiévenart et al. have developed a dynamic approach to slicing WebAssembly
programs based on Observational-Based Slicing (ORBS)[60, 61]. This technique
aids in debugging, understanding programs, and conducting security analysis.
However, Wasabi [62] remains the only general-purpose dynamic analysis tool for
WebAssembly binaries, primarily used for profiling, instrumenting, and debugging
WebAssembly code. These tools typically analyze software behavior during
execution, making them inherently reactive.

Protecting WebAssembly binaries and runtimes: The techniques
discussed previously are primarily focused on reactive analysis of WebAssembly
binaries. However, there exist approaches to harden WebAssembly binaries,
enhancing their secure execution, and therefore protecting the security of the

entire execution ecosystem. For instance, Swivel [63] proposes a compiler-based
strategy designed to eliminate speculative attacks on WebAssembly binaries in
Function-as-a-Service (FaaS) platforms by linearizing the machine code from
compiling a WebAssembly binary. Similarly, Kolosick et al. [64] modify the Lucet
compiler to use zero-cost transitions, eliminating the performance overhead of
SFI guarantees implementation. In addition, WaVe [65] introduces a mechanized
engine for WebAssembly that facilitates differential testing. WaVe can be
employed to detect anomalies in engine implementations running Wasm-WASI
programs.

WebAssembly malware: Since the introduction of WebAssembly, the
Web has consistently experienced an increase in cryptomalware. This rise
primarily stems from the shift of mining algorithms from CPUs to WebAssembly,
a transition driven by notable performance benefits [66]. Tools such as
MineSweeper [26], MinerRay [27], and MINOS [28] employ static analysis
with machine learning techniques to detect browser-based cryptomalware. In
addition, SEISMIC [29], RAPID [30], and OUTGuard [31] leverage dynamic
analysis techniques to achieve a similar objective. Moreover, VirusTotal16, a tool
incorporating over 60 commercial antivirus systems as black-boxes, is capable
of detecting cryptomalware in WebAssembly binaries. However, obfuscation
studies have exposed their shortcomings, revealing an almost unexplored area for
WebAssembly that threatens malware detection accuracy. In concrete, Bhansali
et al.’s seminal work [67] demonstrates that cryptomining algorithm’s source code
can evade previous techniques through the use of obfuscation techniques.

2.1.6 Open challenges

Despite progress in WebAssembly analysis, numerous challenges remain.
WebAssembly, though deterministic and well-typed by design, is susceptible to a
variety of security threats. First, most existing WebAssembly research is reactive,
focusing on detecting and fixing vulnerabilities already reported. This approach
leaves WebAssembly binaries and runtime implementations potentially open to
unidentified attacks. Second, side-channel attacks present a significant risk.
Genkin et al., for example, illustrated how WebAssembly could be manipulated to
extract data via cache timing-side channels [22]. Furthermore, research conducted
by Maisuradze and Rossow demonstrated the potential for speculative execution
attacks on WebAssembly binaries [23]. Rokicki et al. disclosed the possibility for
port contention side-channel attacks on WebAssembly binaries in browsers [18].
Finally, the binaries themselves may be inherently vulnerable. For example,
studies by Lehmann et al. and Stiévenart et al. suggested that flaws in C/C++
source code could infiltrate WebAssembly binaries [20, 21].

16https://www.virustotal.com

https://www.virustotal.com

2.2 Software diversification

Software diversification involves the synthesis, reuse, distribution, and execution
of different, functionally equivalent programs. Along with this work, we
refer to those programs as software variants. As outlined in Baudry et al.’s
survey [68], Software Diversification falls into five usage categories: reusability
[69],performance [70], fault tolerance [71], software testing [72], and security [33].
Our work specifically contributes to the last two categories. Based on the works
of Cohen et al. [33], Forrest et al. [34], Jackson et al. [73] and Baudry et al.
[68], this section presents core concepts and related works. Notice that, we do
not regard program variants from Software Product Lines [74] as instances of
software diversification. The primary reason is that, by design, Software Product
Lines do not produce functionally equivalent programs.

Software variants in our context refer to functionally equivalent versions of
an original program, produced through Software Diversification at various stages
of the software lifecycle, from dependencies (coarse-grained) to machine code
levels (fine-grained). The main goal of Software Diversification is to increase the
cost of exploitation by making software less predictable. Diversification may be
natural [68] or automatic [75]. Natural diversity refers to the side effect of humans
creating software variants using different programming languages, compilers,
and operating systems [68], all of which adhere to the initial requirements.
The software market and competition typically address the creation of natural
diversity. For example, Firefox and Chrome web browsers demonstrate natural
diversity due to their practical differences in implementation and performance,
despite serving the same purpose. This logic extends to operating systems,
database engines, virtual machines, and application servers [68]. Natural diversity
significantly aids in system security, as different variants are not susceptible to
the same vulnerabilities [76, 77]. Unlike N-Version programming [78], natural
diversity organically emerges over decades. In other words, while it does not
require the allocation of additional human effort, natural diversity cannot be
automatically generated. This is because it is a side effect of the software
development process. Given that WebAssembly is a relatively new technology,
natural diversity is presently not a feasible option. Hence, for WebAssembly,
feasible options are systematic and automatic diversification approaches.

2.2.1 Automatic generation of software variants
The concept of automatic software variants starts with Randell’s 1975 work [79],
which put forth the notion of artificial fault-tolerant instruction blocks. Artificial
Software Diversification, as proposed by Cohen and Forrest in the 1990s [33, 34],
gets its development through rewriting strategies. These strategies consist of
sets of rewriting rules for modifying software components to create functionally
equivalent, yet distinct, programs. Rewriting strategies typically take the form
of tuples: instr1 => (instr2, instr3, ...), where instr represents the

original code and (instr2, instr3, ...) denotes the functionally equivalent
code.

Rewriting strategy: The automatic creation of Software Diversification begins
with creating rewriting rules. A rewriting rule refers to a functionally equivalent
substitution for a code segment, manually written. These rules can be applied at
varying levels, from coarse to fine-grained. This can range from the program
dependencies level [80] to the instruction level [75]. For example, Cleemput
et al. [81] and Homescu et al. [82] inject NOP instructions to yield statically
varied versions at the instruction level. Here, the rewriting rule is represented as
instr => (nop instr), signifying an insertion of a nop operation preceding the
instruction.

Instruction Reordering: This strategy reorders instructions in a program.
For example, variable declarations may change if compilers reorder them in the
symbol tables. This prevents static examination and analysis of parameters and
alters memory locations. In this area, Bhatkar et al. [83, 84] proposed the random
permutation of variable and routine order for ELF binaries. Such strategies are
not implemented for WebAssembly to the best of our knowledge.

Adding, Changing, Removing Jumps and Calls: This strategy generates
program variants by adding, changing, or removing jumps and calls in the original
program. Cohen [33] primarily illustrated this concept by inserting random jumps
in programs. Pettis and Hansen [85] suggested splitting basic blocks and functions
for the PA-RISC architecture, inserting jumps between splits. Similarly, Crane
et al. [86] de-inlined basic blocks of code as an LLVM pass. In their approach,
each de-inlined code transforms into semantically equivalent functions that are
randomly selected at runtime to replace the original code calculation. On the
same topic, Bhatkar et al. [84] extended their previous approach [83], replacing
function calls with indirect pointer calls in C source code, allowing post-binary
reordering of function calls. In the WebAssembly context, thesimilar work is
Wobfuscator [87]. Wobfuscator, a JavaScript obfuscator, substitutes pieces of
JavaScript code with WebAssembly code, e.g., numeric calculi. This strategy
effectively uses the interleaving of calls between JavaScript and WebAssembly to
provide JavaScript variants.

Program Memory and Stack Randomization: This strategy alters the
layout of programs in the host memory. Additionally, it can randomize how a
program variant operates its memory. The work of Bhatkar et al. [83, 84] proposes
to randomize the base addresses of applications and library memory regions in
ELF binaries. Tadesse Aga and Autin [88], and Lee et al. [89] propose a technique
to randomize the local stack organization for function calls using a custom LLVM
compiler. Younan et al. [90] suggest separating a conventional stack into multiple
stacks where each stack contains a particular class of data. On the same topic,
Xu et al. [91] transforms programs to reduce memory exposure time, improving
the time needed for frequent memory address randomization. This makes it very

challenging for an attacker to ignore the key to inject executable code. This
strategy disrupts the predictability of program execution and mitigates certain
exploits such as speculative execution. No work has been found that explicitly
applies this strategy to WebAssembly.

ISA Randomization and Simulation: This strategy involves using a key to
cipher the original program binary into another encoded binary. Once encoded,
the program can only be decoded at the target client, or it can be interpreted in
the encoded form using a custom virtual machine implementation. This technique
is strong against attacks involving code inspection. Kc et al. [92], and Barrantes
et al. [93] proposed seminal works on instruction-set randomization to create
a unique mapping between artificial CPU instructions and real ones. On the
same topic, Chew and Song [94] target operating system randomization. They
randomize the interface between the operating system and the user applications.
Couroussé et al. [95] implement an assembly-like DSL to generate equivalent code
at runtime in order to increase protection against side-channel attacks. Their
technique generates a different program during execution using an interpreter
for their DSL. Generally, ISA randomization and simulation usually faces a
performance penalty, especially for WebAssembly, due to the decoding process
as shown in WASMixer evaluation [96].

Code obfuscation: Code obfuscation can be seen as a simplification of ISA
randomization. The main difference between encoding and obfuscating code is
that the former requires the final target to know the encoding key while the latter
executes as is in any client [97]. Yet, both strategies aim to tackle static reverse
engineering of programs. In the context of WebAssembly, Romano et al. [87]
proposed an obfuscation technique, wobfuscator, for JavaScript in which part of
the code is replaced by calls to complementary WebAssembly functions. Yet,
wobfuscator targets JavaScript code, not WebAssembly binaries.

Enumerative synthesis: Enumerative synthesis is a fully automated and
systematic approach to generate program variants. It examines all possible
programs specific to a given language. The process of enumerative synthesis
commences with a piece of input program, typically a basic block. Incrementally,
using a defined grammar, it generates all programs of size n. A generated program
is then checked for equivalence to the original program, either by using a test suite
or a theorem solver. If the generated variant is proven equivalent, it is added to
the variant’s collection. The procedure continues until all potential programs have
been explored. This approach proves especially effective when the solution space
is relatively small or can be navigated efficiently. Jacob et al. [98] implemented
this strategy for x86 programs. They named this technique superdiversification,
drawing parallels to superoptimization [99]. Since this strategy fully explores
a program’s solution space, it contains the aforementioned strategies as special
cases. The application of enumerative synthesis to WebAssembly has not been
explored.

2.2.2 Equivalence Checking

Equivalence checking between program variants is a vital component for any
program transformation task, ranging from checking compiler optimizations [100]
to the artificial synthesis of programs discussed in this chapter. It proves
that two pieces of code or programs are functionally equivalent [101]. We can
roughly simplify the checking process with the following property: two programs
are deemed equivalent if they generate identical outputs when given identical
inputs from a closed collection of inputs [102]. We adopt this definition of
functional equivalence modulo input throughout this dissertation. In Software
Diversification, equivalence checking seeks to preserve the original functionality
of programs while varying observable behaviors. Two programs, for instance, can
differ statically and still compute the same result. We outline three methods to
check variant equivalence: by construction, check modulo tests and proof-driven
equivalence checking.

Equivalence by construction: The equivalence property can be guaranteed
by construction. As previously mentioned, Cleemput et al. [81] and Homescu et
al. [82] exemplify transformation strategies that generate semantically equivalent
program variants. These variants are equivalent by construction. In their
case, NOP instructions produce statically different variants. NOP operations,
interleaved by any other type of original instruction, serve as a functionally
equivalent replacement. However, developer errors may occur during this process,
necessitating further validation. The test suite of the original program can serve
as a check for the variant.

Checking modulo tests: The process of checking modulo tests involves utilizing
a test suite to confirm the equivalence of program variants [103, 104]. When
a program variant successfully passes the test suite, it is deemed equivalent
to the original. It is reasonable to assume that projects prioritizing quality
and security are likely to have a robust test suite that facilitates this type of
equivalence checking. However, this technique’s effectiveness is limited by the
necessity for a preexisting test suite. Yet, as an alternative, fuzzers can be used
to automatically generate tests [105]. Fuzzers operate by randomly generating
inputs that lead to different observable behaviors. If a variant produces a different
output from two identical inputs, it is not equivalent to the original program.
Fuzzers’ primary drawback is their time-consuming nature and the requirement
for manually introducing oracles. Recent advancements in the field of machine
learning have led researchers to explore the application of neural networks in
verifying program equivalence. Zhang and his team’s work provides an example
of this, where Large Language Models are used to generate reference oracles and
test cases [106]. Despite its effectiveness, this method attains an accuracy rate of
just 88%, which falls short of providing complete verification.

Formal verification: In the absence of a test suite or a technique that inherently
implements the equivalence property, the works mentioned earlier use automated
theorem provers. Theorem provers rely on SMT solvers [107] to prove the
equivalence of program variants. The central idea for theorem provers is to
convert the two code variants into mathematical formulas. The core component,
the SMT solver, then checks for counter-examples that satisfy the negation of
the mathematical formulas [108]. When it finds a counter-example, it uncovers
an input for which the two mathematical formulas yield different outputs. The
primary limitation of this technique resides in the conversion process. All
algorithms can be translated into a mathematical formula. However, under
certain theories such as loops for linear arithmetic, the satisfiability query may
be undecidable. As a result, SMT solvers cannot make a decision. Nevertheless,
this technique is frequently used for checking no-jump-programs like basic block
and peephole replacements [109].

2.2.3 Variants deployment
Program variants, once generated and verified, may be used in two primary
scenarios: Randomization or Multivariant Execution (MVE) [73].

Randomization: In the context of our work, the term Randomization denotes
a program’s ability to present different variants to different clients. In this setup,
a program, randomly chosen from a collection of variants (referred to as the
program’s variant pool), is assigned to a the client during each deployment.
Jackson et al. [73] define the variant pool in Randomization as herd immunity, as
vulnerable binaries can only affect a segment of the client community. El-Khalil
et al. [110] suggest employing a custom compiler to generate varying binaries
from the compilation process. They adapt a version of GCC 4.1 to partition a
conventional stack into several component parts, termed multistacks. Similarly,
Singhal et al., propose Cornucopia [111]. Cornucopia generates multiple variants
of a program by using different compiler flag combinations. Aga et al. propose
the generation of program variants through the randomization of its data layout
in memory [88]. This method allows each variant to operate on the same data
in memory but at different memory offsets. Randomization can also be applied
to virtual machines and operating systems. On this note, Kc et al. [92] establish
a unique mapping between artificial CPU instructions and actual ones, enabling
the assignment of various variants to specific target clients. In a similar vein, Xu
et al. [91] recompile the Linux Kernel to minimize the exposure time of persistent
memory objects, thereby increasing the frequency of address randomization.

Multivariant Execution (MVE): Multiple program variants are composed
into a single binary, known as a multivariant binary [112]. Each multivariant
binary is randomly deployed to a client. Then, the multivariant binary executes
its embedded program variants at runtime. These embedded variants can either
execute in parallel to check for inconsistencies, or as a single program to randomize

execution paths [83]. Bruschi et al. extend the concept of executing two variants
in parallel, introducing non-overlapping and randomized memory layouts [113].
At the same time, Salamat et al. modify a standard library to generate 32-
bit Intel variants. These variants have a stack that grows in the opposite
direction, allowing for the detection of memory inconsistencies [114]. Davi et al.
propose Isomeron, an approach for execution-path randomization [115]. Isomeron
operates by simultaneously loading the original program and a variant. It then
uses a coin flip to determine which copy of the program to execute next at
the function call level. Previous works have highlighted the benefits of limiting
execution to only two variants in a multivariant environment. Agosta et al., as
well as Crane et al., used more than two generated programs in the multivariant
composition, thereby randomizing software control flow at runtime [116, 86].
Both strategies have proven effective in enhancing security by addressing known
vulnerabilities, such as Just-In-Time Return-Oriented Programming (JIT-ROP)
attacks [117] and power side-channel attacks [118]. Lastly, only Voulimeneas et
al. [119] have recently proposed a multivariant execution system that enhances
security by parallelizing the execution of variants across different machines.

2.2.4 Measuring Software Diversification
Measuring Software Diversification presents a significant challenge. The size
of the variant space does not necessarily correlate with a variant’s capacity
to fulfill an objective such as hardening attacks by making systems less
predictable [33]. Ideally, real scenarios would provide the most accurate
measurement of diversification, e.g., demonstrating a variant’s effectiveness under
specific attacks. However, such an approach is not always feasible, since Software
Diversification is a preventive strategy. Hence, a combination of static and
dynamic metrics is required for measuring Software Diversification.

Static comparison of variants: Static metrics are used to measure the
diversity of programs without needing execution. The fundamental concept
entails comparing variant source codes or binary codes to determine how
diverse they are. Usually, comparing variants means defining a distance metric
between programs [102] where the more different the programs are, the greater
the distance. At the low-level of bytecode instructions, for example, these
metrics include counting instructions [120], Levenshtein distance [121], and global
alignments [36]. On the other hand, at the high-level of source code, these
metrics often rely on Abstract Syntax Tree (AST) diffing, such as GUMtree-based
distances [122] or machine learning inference [123]. As an example of measuring
the diversification, Bostani et al. [124] illustrate the use of static distances in
guiding the generation process of variants. They categorize the space of Android
applications into malware and goodware. Then, they create malware variants by
employing a static distance metric to approach the goodware group as closely as
possible, thus successfully evading malware classifiers.

Dynamic comparison of variants: Static comparisons between variants
inherently have limitations. For example, two variants may show differences at
the source code level but exhibit identical behavior during execution. Take the
addition of nop operations to a program as an instance. Despite source code level
differences, the variant and the original program execute identical instructions,
leading to similar behaviors modulo input. Measuring Software Diversification
primarily aims to demonstrate variant-specific observabilities. While static
differences are usually observable, runtime information holds complementary
relevance [125]. Therefore, dynamic metrics are essential to assess the diversity
of variants. For instance, Forrest et al. [126] were pioneers in classifying program
behaviors by analyzing their system call traces using n-grams profiling. Cabrera
et al. used a global alignments approach to gauge the diversity of JavaScript
bytecode traces within the Chrome browser [14]. Fang et al. proposed a method to
counteract JavaScript obfuscation techniques used in malicious code, by analyzing
dynamic information captured from V8 bytecode traces [127]. Dynamic metrics
are primarily employed to cluster similar behaviors. Following the same logic,
the diversity is greater when the difference between behaviors is larger. Notice
that, dynamic metrics can be difficult due to the expense of program execution
or the complication of required user interaction. On the other hand, malware
programs, which usually do not require user interaction, are simpler to evaluate
in controlled environments before actual deployment.

In the context of WebAssembly, there exist no explicit works on Software
Diversification. Consequently, previous metrics have not been directly applied
to measure diversification in WebAssembly binaries. However, in other domains,
such as the analysis of WebAssembly binaries, several studies have employed
static metrics. For example, VeriWasm quantifies attack-based patterns, stating
that a WebAssembly binary is more secure with a lower pattern count [128].
This metric might potentially serve as a guide during variant generation. In
the field of malware detection, MINOS [28] proposes transforming WebAssembly
binaries into grayscale images. They then employ convolutional neural networks
to identify malware, where an increased similarity to a malware image increases
the probability of the binary being malware. Regarding the dynamic comparisons,
Wang et al.’s study [29] profiles WebAssembly instructions during runtime to
identify malicious behavior.

2.2.5 Offensive or Defensive assessment of diversification
Lundquist et al. [75] distinguish Software Diversification into two categories:
Defensive and Offensive Diversification. On the one hand, Defensive Software
Diversification introduces unpredictability in system behavior. By making
software less predictable, defensive Software Diversification aims to proactively
deter attacks, acting as a complementary strategy to other, more reactive, security
measures. The majority of previously discussed works in this section contribute to

defensive diversification. Yet, Software Diversification that aims to create diverse
harmful programs is considered Offensive Diversification [129].

Offensive Diversification: Offensive Diversification is conceptually equal to
Defensive Software Diversification. Yet, in an offensive context, one may apply
diversification techniques to malware or other malicious codes to evade detection
by security software [130]. One might equate Offensive Diversification with Code
obfuscation, if its purpose shifts from preventing reverse engineering by malicious
actors, to evading detection by malware analysis systems.

Malicious actors may employ previously discussed diversification strategies to
evade detection [131]. For instance, in the Web context, Weihang et al. propose
to randomly transform HTML elements of web pages to evade advertisement
blockers [132]. Over time, evasion techniques have evolved in both complexity
and sophistication [133]. Chua et al. [134], for instance, suggested a framework for
automatically obfuscating the source code of Android applications using method
overloading, opaque predicates, try-catch, and switch statement obfuscation,
resulting in multiple versions of identical malware. Moreover, machine learning
approaches have been used to develop evasive malware [135], drawing on a corpus
of pre-existing malware [124]. These methods aim to thwart static malware
detectors, yet, more advanced techniques focus on evading dynamic detection
mostly by employing throttling [136, 137].

The term Offensive Software Diversification may seem counterintuitive. Yet,
such approaches measure the resilience and accuracy of security systems. This
is an almost unexplored area in WebAssembly, posing a threat to malware
detection accuracy. Specifically, only Bhansali et al.’s seminal work [67] has
demonstrated that a cryptomining algorithm’s source code can evade pre-existing
malware detection methods. More recently, Madvex [138] has sought to obfuscate
WebAssembly binaries to achieve malware evasion, but this approach is limited
to altering only the code section of WebAssembly binaries.

2.3 Open challenges for Software Diversification

As outlined in Section 2.1.6, our primary motivation for the contributions of
this thesis are the open issues within the WebAssembly ecosystem. We see
potential in employing Software Diversification to address them. Based on our
previous discussion, we highlight several open challenges in the realm of Software
Diversification for WebAssembly. First, WebAssembly, being an emerging
technology, is in the process of implementing defensive measures. In addition,
while measures for WebAssembly can be standardized, the implementation of
these standards across the ecosystem is naturally slow. Therefore, applying
Software Diversification directly to the generation of WebAssembly binaries,
according to any given specification, could serve as a valuable strategy to lessen
the impact of vulnerabilities. Second, despite the abundance of related work

on software diversity, its exploration in the context of WebAssembly remains
limited. This thesis is the first to investigate Software Diversity in depth for the
emerging WebAssembly ecosystem. Third, both randomization and multivariant
execution remain largely unexplored within the WebAssembly context. The
deployment of Software Diversification in WebAssembly poses unique challenges.
WebAssembly ecosystems are remarkably dynamic. Web browsers and FaaS
platforms serve as prime examples. In these environments, WebAssembly
binaries are served millions of times simultaneously to the former, while new
WebAssembly binaries are cold-spawned and executed upon each user request in
the latter. Thus, designing practical Software Diversification for WebAssembly
requires careful consideration of the deployment environment. Last but not
least, research on malware detection, as discussed in Section 2.1.5, suggests that
offensive diversification may assist in evaluating the resilience and accuracy of
WebAssembly’s security systems.

3
AUTOMATIC
SOFTWARE

DIVERSIFICATION
FOR WEBASSEMBLY

All problems in computer science can be solved by another level of
indirection, except for the problem of too many layers of indirection.

— David Wheeler

The process of generating WebAssembly binaries starts with the original
source code, which is then processed by a compiler to produce a
WebAssembly binary. This compiler is generally divided into three

main components [139]: a frontend that converts the source code into an
intermediate representation, a transformer that modifies this representation
usually for performance, and a backend that compiles the final WebAssembly
binary. This architecture is illustrated in the leftmost part of Figure 3.1.

MEWE

CROW

IR

wasm-mutate

Source
Code

Frontend Optimizer/
Transformer

IR Wasm

... ...
Backend

Wasm

Wasm

Wasm

Wasm

Compiler
based

Binary
based

...

Multivariant
Wasm

Figure 3.1: Approach landscape containing our three technical contributions: CROW
squared in red, MEWE squared in green and WASM-MUTATE squared in blue. We
annotate where our contributions, compiler-based and binary-based, stand in the landscape
of generating WebAssembly programs.

Software Diversification can be integrated at various stages of this compilation
process. However, applying diversification at the frontend has limitations, as it

35

would need a unique diversification mechanism for each language compatible with
the frontend component. This makes the later stages of the compilers an ideal
point for introducing practical Wasm diversification techniques.

Our compiler-based strategies, represented in red and green in Figure 3.1,
introduce a diversifier component into the transformer and backend stages. This
transformer component generates variants in the intermediate representation of
a compiler, thereby creating artificial software diversity for WebAssembly. The
variants are then compiled into WebAssembly binaries by the backend component
of the compiler. Concretely, we propose two tools: CROW, which generates
WebAssembly program variants, and MEWE, which packages these variants to
enable multivariant execution [112]. Alternatively, diversification can be directly
applied to the WebAssembly binary, offering a language and compiler-agnostic
approach. Our binary-based strategy, WASM-MUTATE, represented in blue in
Figure 3.1, employs rewriting rules on an e-graph data structure to generate a
variety of WebAssembly program variants.

Within this chapter, we introduce three technical contributions: CROW,
MEWE, and WASM-MUTATE. We also compare these contributions,
highlighting their complementary nature. Remarkably, we provide the artifacts
for our contributions to advocate for open research and reproducibility of our
main takeaways.

3.1 CROW: Code Randomization of WebAssembly

This section details CROW [36], represented as the red squared tooling in
Figure 3.1. CROW is designed to produce functionally equivalent Wasm variants
from the output of an LLVM front-end, utilizing a custom Wasm LLVM backend.

Figure 3.2 illustrates CROW’s workflow in generating program variants, a
process compound of two core stages: exploration and combination. During
the exploration stage, CROW processes every instruction within each function
of the LLVM input, creating a set of functionally equivalent code variants.
This process ensures a rich pool of options for the subsequent stage. In the
combination stage, these alternatives are assembled to form diverse LLVM IR
variants, a task achieved through the exhaustive traversal of the power set of all
potential combinations of code replacements. The final step involves the custom
Wasm LLVM backend, which compiles the crafted LLVM IR variants into Wasm
binaries.

3.1.1 Enumerative synthesis
The cornerstone of CROW’s exploration mechanism is its code replacement
generation strategy, which is inspired by the superdiversifier methodology
proposed by Jacob et al. [98]. The search space for generating variants is
delineated through an enumerative synthesis process (see Enumerative synthesis

CROW
Diversifier

Code Replacement

LLVM
 IR

Orig.
Instructions

Equivalent
Instructions

Orig.
Instructions

Equivalent
Instructions

LLVM
 Function

...
...

Exploration Combination

LLVM
 IR

LLVM
 IR Wasm LLVM

backend

Wasm

Wasm

...

Equivalent
Instructions

...

LLVM
Function

...

Figure 3.2: CROW components following the diagram in Figure 3.1. CROW takes LLVM
IR to generate functionally equivalent code replacements. Then, CROW assembles program
variants by combining them. Figure taken from [40].

in Section 2.2.1), which systematically produces all possible code replacements
for each data flow graph that can be constructed from the original program. If
a code replacement is identified to function identically to the original program,
it is reported as a functionally equivalent variant. This equivalence is confirmed
using a theorem solver for rigorous verification.

CROW is developed by extending the enumerative synthesis implementation
found in Souper [140], an LLVM-based superoptimizer. Specifically, CROW
constructs a Data Flow Graph(DFG) for each LLVM instruction that returns an
integer. Subsequently, it generates all viable expressions derived from a selected
subset of the LLVM Intermediate Representation. The enumerative synthesis
process incrementally generates code replacements, starting with the simplest
expressions (those composed of a single instruction) and gradually increasing in
complexity. The exploration process continues either until a timeout occurs or
the size of the generated replacements exceeds a predefined threshold.

CROW is carefully designed to boost the generation of variants as much as
possible. First, we disable the majority of the pruning strategies. Instead of
preventing the generation of commutative operations during the search, CROW
still uses such transformation as a strategy to generate program variants. Second,
CROW applies code transformations independently. For instance, if a suitable
replacement is identified that can be applied at N different locations in the
original program, CROW will generate 2N distinct program variants, i.e., the
power set of applying the transformation or not to each location. This approach
leads to a combinatorial explosion in the number of available program variants,
especially as the number of possible replacements increases. Third, we remove all
built-in optimizations in the LLVM backend that could reverse Wasm variants,
i.e., we disable all optimizations in the Wasm backend that could reverse the
CROW transformations

Notice that, the search space increases exponentially with the number
of language instructions used for enumerative synthesis. To mitigate this
issue, we prevent CROW from synthesizing instructions without correspondence
in the Wasm backend. For example, removing LLVM instructions without
corresponding WebAssembly instructions effectively reduces the search space.

Leveraging the ascending nature of its enumerative synthesis process, CROW
is capable of creating variants that may outperform the original program in both
size and efficiency. For instance, the first functionally equivalent transformation
identified is typically the most optimal in terms of code size. This approach offers
developers a range of performance options, allowing them to balance between
diversification and performance without compromising the latter.

3.1.2 Constant inferring

CROW inherently introduces a transformation strategy called constant inferring,
which significantly expands the variety of WebAssembly program variants.
Specifically, CROW identifies segments of code that can be simplified into a single
constant assignment, with a particular focus on variables that control branching
logic. After applying this constant inferring technique, the resulting program
diverges substantially from the original program structure. This is crucial for
diversification efforts, as one of the primary objectives is to create variants that
are as distinct as possible from the original code (see Section 2.2.4). In essence,
the more divergent the variant, the more challenging it becomes to trace it back
to its original form.

Let us illustrate the case with an example. The Babbage problem code in
Listing 3.1 is composed of a loop that stops when it discovers the smallest number
that fits with the Babbage condition in Line 4.

1 int babbage() {
2 int current = 0,
3 square;
4 while ((square=current*current) %

↪→ 1000000 != 269696) {
5 current++;
6 }
7 printf ("The number is %d\n",

↪→ current);
8 return 0 ;
9 }

Listing 3.1: Babbage problem. Taken
from [40].

int babbage() {
int current = 25264;

printf ("The number is %d\n", current)
↪→ ;

return 0 ;
}

Listing 3.2: Constant inferring
transformation over the original
Babbage problem in Listing 3.1. Taken
from [40].

CROW deals with this case, generating the program in Listing 3.2. It infers

the value of current in Line 2 such that the Babbage condition is reached1.
Therefore, the condition in the loop will always be false. Then, the loop is dead
code and is removed in the final compilation. The new program in Listing 3.2
is remarkably smaller and faster than the original code. Therefore, it offers
differences both statically and at runtime2.

3.1.3 Exemplifying CROW

Let us illustrate how CROW works with the example code in Listing 3.3. The f
function calculates the value of 2 ∗ x + x where x is the input for the function.
CROW compiles this source code and generates the intermediate LLVM bitcode
in the leftmost part of Listing 3.4. CROW potentially finds two integers returning
instructions to look for variants, as the rightmost part of Listing 3.4 shows.

1 int f(int x) {
2 return 2 * x + x;
3 }

Listing 3.3: C function that calculates the quantity 2x + x.

define i32 @f(i32) {

%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

ret i32 %3
}

define i32 @main() {
%1 = tail call i32 @f(

i32 10)
ret i32 %1

}

Replacement candidates
for code_1

%2 = mul nsw i32 %0,2

%2 = add nsw i32 %0,%0

%2 = shl nsw i32 %0, 1:i32

Replacement candidates for
code_2

%3 = add nsw i32 %0,%2

%3 = mul nsw %0, 3:i32

Listing 3.4: LLVM’s intermediate representation program, its extracted
instructions and replacement candidates. Gray highlighted lines represent original
code, green for code replacements.

1In theory, this value can also be inferred by unrolling the loop the correct number of times
with the LLVM toolchain. However, standard LLVM tools cannot unroll the while-loop because
the loop count is too large.

2Notice that for the sake of illustration, we show both codes in the C language; this process
inside CROW is performed directly in LLVM IR.

%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

%2 = add nsw i32 %0,%0
%3 = add nsw i32 %0,%2

%2 = shl nsw i32 %0, 1:i32
%3 = add nsw i32 %0,%2

%2 = mul nsw i32 %0,2
%3 = mul nsw %0, 3:i32

%2 = add nsw i32 %0,%0
%3 = mul nsw %0, 3:i32

%2 = shl nsw i32 %0, 1:i32
%3 = mul nsw %0, 3:i32

Listing 3.5: Candidate code replacement combination. Orange highlighted code
illustrates replacement candidate overlapping.

func $f (param i32) (result i32)
local.get 0
i32.const 2
i32.mul
local.get 0
i32.add

func $f (param i32) (result i32)
local.get 0
local.get 0
i32.add
local.get 0
i32.add

func $f (param i32) (result i32)
local.get 0
i32.const 1
i32.shl
local.get 0
i32.add

func $f (param i32) (result i32)
local.get 0
i32.const 3
i32.mul

Listing 3.6: Wasm program variants generated from program Listing 3.3.

CROW, detects code_1 and code_2 as the enclosing boxes in the leftmost
part of Listing 3.4 shows. CROW synthesizes 2 + 1 candidate code replacements
for each code respectively as the green highlighted lines show in the rightmost
parts of Listing 3.4. The baseline strategy of CROW is to generate variants out of
all possible combinations of the candidate code replacements, i.e., uses the power
set of all candidate code replacements.

In the example, the power set is the cartesian product of the found candidate
code replacements for each code block, including the original ones, as Listing 3.5
shows. The power set size results in 6 potential function variants. Yet, the
generation stage would eventually generate 4 variants from the original program.
CROW generated 4 statically different Wasm files, as Listing 3.6 illustrates. This
gap between the potential and the actual number of variants is a consequence of
the redundancy among the bitcode variants when composed into one. In other
words, if the replaced code removes other code blocks, all possible combinations
having it will be in the end the same program. In the example case, replacing
code_2 by mul nsw %0, 3, turns code_1 into dead code, thus, later replacements
generate the same program variants. The rightmost part of Listing 3.5 illustrates
how for three different combinations, CROW produces the same variant. We call
this phenomenon code replacement overlapping.

Contribution paper and artifact

CROW is a compiler-based approach. It leverages enumerative synthesis to generate
functionally equivalent code replacements and assembles them into diverse Wasm
program variants. CROW uses SMT solvers to guarantee functional equivalence.
CROW is fully presented in Cabrera-Arteaga et al. “CROW: Code Randomization
of WebAssembly” at proceedings of Measurements, Attacks, and Defenses for the
Web (MADWeb), NDSS 2021 https://doi.org/10.14722/madweb.2021.23004.
CROW source code is available at https://github.com/ASSERT-KTH/slumps

3.2 MEWE: Multi-variant Execution for WebAssembly

This section describes MEWE [37], our second technical contribution. MEWE
synthesizes diversified function variants by using CROW. It then provides
execution-path randomization in a Multivariant Execution (MVE) [83].
Execution path randomization is a technique that randomizes the execution
path of a program at runtime, i.e. at each invocation of a function, a different
variant is executed. MEWE generates application-level multivariant binaries
without changing the operating system or Wasm runtime. It creates an MVE by
intermixing functions for which CROW generates variants, as illustrated by the
green square in Figure 3.1. MEWE inlines function variants when appropriate,
resulting in call stack diversification at runtime.

As illustrated in Figure 3.3, MEWE takes the LLVM IR variants generated
by CROW’s diversifier. It then merges LLVM IR variants into a Wasm
multivariant. In the figure, we highlight the two components of MEWE,
Multivariant Generation and the Mixer. In the Multivariant Generation process,
MEWE gathers the LLVM IR variants created by CROW. The Mixer component,
on the other hand, links the multivariant binary and creates a new entrypoint for
the binary. Creating a new entrypoint is needed in case the output of CROW are
variants of the original entrypoint, e.g. the main function. Concretely, it wraps
the dispatcher for the entrypoint variants as a new function for the final Wasm
binary and is declared as the application entrypoint. The random generator is
needed to perform the execution-path randomization. For the random generator,
we rely on WASI’s specification [41] for the random behavior of the dispatchers.
However, its exact implementation is dependent on the host engine on which the
binary is executed. Finally, using the same custom Wasm LLVM backend as
CROW, we generate a standalone multivariant Wasm binary. Once generated,
the multivariant Wasm binary can be deployed to any Wasm engine.

3.2.1 Multivariant call graph
The key component of MEWE consists of combining the variants into a single
binary. The core idea is to introduce one dispatcher function per original function
with variants. A dispatcher function is a synthetic function in charge of choosing

https://doi.org/10.14722/madweb.2021.23004
https://github.com/ASSERT-KTH/slumps

MEWE

LLVM IR

function1function1function1function1

Multivariant
Wasm Binary

Multivariant
Generation

LLVM IR

function1function1function1function1

...

Mixer

Wasm
backend

LLVM Multivariant
binary

function1function1function1function1

function1function1function1functionn

LLVM Multivariant
binary
function1function1function1function1

random
generator

entrypoint
tampering

CROW

Figure 3.3: Overview of MEWE workflow. It takes as input an LLVM binary. It
first generates a set of functionally equivalent variants for each function in the binary
using CROW. Then, MEWE generates an LLVM multivariant binary composed of all the
function variants. Then, the Mixer includes the behavior in charge of selecting a variant
when a function is invoked. Finally, the MEWE mixer composes the LLVM multivariant
binary with a random number generation library and tampers the original application
entrypoint. The final process produces a Wasm multivariant binary ready to be deployed.

a variant at random when the original function is called. With the introduction of
the dispatcher function, MEWE turns the original call graph into a multivariant
call graph, defined as follows.
Definition 1 (Multivariant Call Graph (MCG)) A multivariant call graph is a call
graph 〈N, E〉 where the nodes in N represent all the functions in the binary and an edge
(f1, f2) ∈ E represents a possible invocation of f2 by f1 [141]. The nodes in N have
three possible types: a function present in the original program, a generated function
variant, or a dispatcher function.

3.2.2 Exemplifying a Multivariant binary
In Figure 3.4, we show the original static call graph for an original program
(top of the figure), as well as the multivariant call graph generated with MEWE
(bottom of the figure). The gray nodes represent function variants, the green
nodes function dispatchers, and the yellow nodes are the original functions. The

directed edges represent the possible calls. The original program includes three
functions. MEWE generates 43 variants for the first function, none for the second,
and three for the third. MEWE introduces two dispatcher nodes for the first
and third functions. Each dispatcher is connected to the corresponding function
variants to invoke one variant randomly at runtime.

In Listing 3.7, we demonstrate how MEWE constructs the function dispatcher,
corresponding to the rightmost green node in Figure 3.4, which handles three
created variants including the original. The dispatcher function retains the same
signature as the original function. Initially, the dispatcher invokes a random
number generator, the output of which is used to select a specific function
variant for execution (as seen on line 6 in Listing 3.7). To enhance security, we
employ a switch-case structure within the dispatcher, mitigating vulnerabilities
associated with speculative execution-based attacks [142] (refer to lines 12 to
19 in Listing 3.7). This approach also eliminates the need for multiple function
definitions with identical signatures, thereby reducing the potential attack surface
in cases where the function signature itself is vulnerable [128]. Additionally,
MEWE can inline function variants directly into the dispatcher, obviating
the need for redundant definitions (as illustrated on line 16 in Listing 3.7).
Remarkably, we prioritize security over performance, i.e., while using indirect
calls in place of a switch-case could offer constant-time performance benefits, we
implement switch-case structures.

1 ; Multivariant foo wrapping ;
2 define internal i32 @foo(i32 %0) {
3 entry:
4 ; It first calls the dispatcher to discriminate between the created

variants ;
5 %1 = call i32 @discriminate(i32 3)
6 switch i32 %1, label %end [
7 i32 0, label %case_43_
8 i32 1, label %case_44_
9]
10 ;One case for each generated variant of foo ;
11 case_43_:
12 %2 = call i32 @foo_43_(%0)
13 ret i32 %2
14 case_44_:
15 ; MEWE can inline the body of the a function variant ;
16 %3 = <body of foo_44_ inlined>
17 ret i32 %3
18 end:
19 ; The original is also included ;
20 %4 = call i32 @foo_original(%0)
21 ret i32 %4
22 }

Listing 3.7: Dispatcher function embedded in the multivariant binary of the
original function in the rightmost green node in Figure 3.4. The code is
commented on for the sake of understanding.

Figure 3.4: Example of two static call graphs. At the top, is the original call graph, and
at the bottom, is the multivariant call graph, which includes nodes that represent function
variants (in gray), dispatchers (in green), and original functions (in yellow).

Contribution paper and artifact

MEWE provides dynamic execution path randomization by packaging variants
generated out of CROW.
MEWE is fully presented in Cabrera-Arteaga et al. “Multi-Variant Execution at
the Edge” Proceedings of Moving Target Defense, 2022, ACM https://dl.acm.o
rg/doi/abs/10.1145/3560828.3564007
MEWE is also available as an open-source tool at https://github.com/ASSERT-
KTH/MEWE

3.3 WASM-MUTATE: Fast and Effective Binary Diversification for
WebAssembly

In this section, we introduce our third technical contribution, WASM-
MUTATE [38], a tool that generates thousands of functionally equivalent variants
out of a WebAssembly binary input. Leveraging rewriting rules and e-graphs
[143] for software diversification, WASM-MUTATE synthesizes program variants
by transforming any section of the original WebAssembly binary. In Figure 3.1,
we highlight WASM-MUTATE as the blue squared tooling.

wasm-mutate

...

rewriting rules

binary IR

e-graph
 generation

e-graph
 traversal

e-graph transformed
IR

Wasm

Wasm

...

Wasm

Figure 3.5: WASM-MUTATE high-level architecture. It generates functionally equivalent
variants from a given WebAssembly binary input. Its central approach involves synthesizing
these variants by substituting parts of the original binary using rewriting rules, boosted by
diversification space traversals using e-graphs.

Figure 3.5 illustrates the workflow of WASM-MUTATE, which initiates with
a WebAssembly binary as its input. The first step involves parsing this binary to
create suitable abstractions, e.g. an intermediate representation. Subsequently,
WASM-MUTATE uses predefined rewriting rules to construct an e-graph for the
initial program, encapsulating all potential equivalent codes derived from the
rewriting rules. The assurance of functional equivalence is rooted in the inherent
properties of the individual rewrite rules employed. Then, pieces of the original
program are randomly substituted by the result of random e-graph traversals,
resulting in a variant that maintains functional equivalence to the original binary.

https://dl.acm.org/doi/abs/10.1145/3560828.3564007
https://dl.acm.org/doi/abs/10.1145/3560828.3564007
https://github.com/ASSERT-KTH/MEWE
https://github.com/ASSERT-KTH/MEWE

WASM-MUTATE applies one transformation at a time. Notice that,
the output of one applied transformation can be chained again as an input
WebAssembly binary, enabling the generation of many variants, leading us to
enunciate the notion of Stacked transformation
Definition 2 (Stacked transformation) Given an original input WebAssembly binary
I and a diversifier D, stacked transformations are defined as the application of D over
the binary I multiple times, i.e., D(D(D(...(I)))). Notice that, the number of stacked
transformations is the number of times the diversifier D is applied.

3.3.1 WebAssembly Rewriting Rules
WASM-MUTATE contains a comprehensive set of 135 rewriting rules. In this
context, a rewriting rule is a tuple (LHS, RHS, Cond) where LHS specifies
the segment of binary targeted for replacement, RHS describes its functionally
equivalent substitute, and Cond outlines the conditions that must be met for the
replacement to take place, e.g. enhancing type constraints. WASM-MUTATE
groups these rewriting rules into meta-rules depending on their target inside a
Wasm binary, ranging from high-level changes affecting binary section structure
to low-level modifications within the code section. This section focuses on the
biggest meta-rule implemented in WASM-MUTATE, the Peephole meta-rule3.

Rewriting rules inside the Peephole meta-rule, operate over the data flow graph
of instructions within a function body, representing the lowest level of rewriting.
In WASM-MUTATE, we have implemented 125 rewriting rules specifically for this
category, each one avoiding targeting instructions that might induce undefined
behavior, e.g., function calls.

Moreover, we augment the internal representation of a Wasm program to
bolster WASM-MUTATE’s transformation capabilities through the Peephole
meta-rule. Concretely, we augment the parsing stage in WASM-MUTATE by
including custom operator instructions. These custom operator instructions are
designed to use well-established code diversification techniques through rewriting
rules. When converting back to the WebAssembly binary format from the
intermediate representation, custom instructions are meticulously handled to
retain the original functionality of the WebAssembly program.

In the following example, we demonstrate a rewriting rule within the Peephole
meta-rule that uses a custom rand operator to expand statically declared
constants within any WebAssembly program function body. The unfolding
rewriting rule, as the name suggests, transforms statically declared constants
into the sum of two random numbers. During the generation of the WebAssembly
variant, the custom rand operator is substituted with a randomly chosen static
constant. Notice that the condition specified in the last part of the rewriting rule
ensures that this predicate is satisfied.

3For an in-depth explanation of the remaining meta-rules, refer to [38].

LHS i32.const x

RHS (i32.add (i32.rand i32.const y))

Cond y = x - i32.rand

Although this rewriting approach may seem simplistic, especially because
compilers often eliminate it through Constant Folding optimization [48], it stresses
the spill/reload component of the compiler when the WebAssembly binary is
JITed to machine code. Spill/reloads occur when the compiler runs out of
physical registers to store intermediate calculations, resorting to specific memory
locations for temporary storage. The unfolding rewriting rule indirectly stresses
this segment of memory when applied many times to the input WebAssembly
binary. Notably, with this specific rewriting rule, we have found a CVE in the
wasmtime standalone engine [144].

3.3.2 E-Graph traversal
We developed WASM-MUTATE leveraging e-graphs, a specific graph data
structure for representing and applying rewriting rules [145]. In an e-graph, there
are two types of nodes: e-nodes and e-classes. An e-node represents either an
operator or an operand involved in the rewriting rule, while an e-class denotes the
equivalence classes among e-nodes by grouping them, i.e., an e-class is a virtual
node compound of a collection of e-nodes. Thus, e-classes contain at least one
e-node. Edges within the graph establish operator-operand equivalence relations
between e-nodes and e-classes. In the context of WASM-MUTATE, e-graphs are
constructed from the input WebAssembly program and the implemented rewriting
rules (we detail the e-graph construction process in Section 3 of [38]).

Willsey et al. highlight the potential for high flexibility in extracting code
fragments from e-graphs, a process that can be recursively orchestrated through a
cost function applied to e-nodes and their respective operands. This methodology
ensures the functional equivalence of the derived code [143]. For instance,
e-graphs address the challenge of generating the optimal code from multiple
optimization rules, regardless of their application sequence [146]. To extract
the “optimal” code from an e-graph, one might commence the extraction at a
specific e-node, subsequently selecting the AST with the minimal size from the
available options within the corresponding e-class’s operands. In omitting the
cost function from the extraction strategy leads us to a significant property: any
path navigated through the e-graph yields a functionally equivalent code variant.

We exploit such property to rapidly generate diverse WebAssembly variants.
We propose and implement an algorithm that facilitates the random traversal
of an e-graph to yield functionally equivalent program variants, as detailed in
Algorithm 1. This algorithm operates by taking an e-graph, an e-class node

(starting with the root’s e-class), and a parameter specifying the maximum
extraction depth of the expression, to prevent infinite recursion. Within the
algorithm, a random e-node is selected from the e-class (as seen in lines 5
and 6), setting the stage for a recursive continuation with the offspring of the
selected e-node (refer to line 8). Once the depth parameter reaches zero, the
algorithm extracts the most concise expression available within the current e-
class (line 3). Following this, the subexpressions are built (line 10) for each child
node, culminating in the return of the complete expression (line 11).

Algorithm 1 e-graph traversal algorithm.
1: procedure traverse(egraph, eclass, depth)
2: if depth = 0 then
3: return smallest_tree_from(egraph, eclass)
4: else
5: nodes← egraph[eclass]
6: node← random_choice(nodes)
7: expr ← (node, operands = [])
8: for each child ∈ node.children do
9: subexpr ← TRAVERSE(egraph, child, depth− 1)
10: expr.operands← expr.operands ∪ {subexpr}
11: return expr

3.3.3 Exemplifying WASM-MUTATE

Let us illustrate how WASM-MUTATE generates variant programs by using the
algorithm enunciated previously. Here, we use Algorithm 1 with a maximum
depth of 1. In Listing 3.8 a hypothetical original Wasm binary is illustrated. In
this context, a potential user has set two pivotal rewriting rules: (x, container
(x nop),) and (x, x i32.add 0, x instanceof i32). The former rule grants
the ability to append a nop instruction to any subexpression, a well-known low-
level diversification strategy [82]. The latter rule adds zero to any numeric value.

Leveraging the code presented in Listing 3.8 alongside the defined rewriting
rules, we build the e-graph, simplified in Figure 3.6. In the figure, we highlight
various stages of Algorithm 1 in the context of the scenario previously described.

(module
(type (;0;) (func (param i32 f32) (result i64)))
(func (;0;) (type 0) (param i32 f32) (result i64)

i64.const 1)
)

Listing 3.8: Wasm function.

The algorithm initiates at the e-class with the instruction i64.const 1, as
seen in Listing 3.8. At 2 , it randomly selects an equivalent node within
the e-class, in this instance taking the i64.add node, resulting: expr =
i64.add l r. As the traversal advances, it follows on the left operand of
the previously chosen node, settling on the i64.const 0 node within the
same e-class 3 . Then, the right operand of the i64.add node is selected,
selecting the container 4 operator yielding: expr = i64.or (i64.const
0 container (r nop)). The algorithm chooses the right operand of the
container 5 , which correlates to the initial instruction e-node highlighted
in 6 , culminating in the final expression: expr = i64.or (i64.const
0 container(i64.const 1 nop)) i64.const 1. As we proceed to the
encoding phases, the container operator is ignored as a real Wasm
instruction, finally resulting in the program in Listing 3.9.
(module

(type (;0;) (func (param i32 f32) (result i64)))
(func (;0;) (type 0) (param i32 f32) (result i64)

(i64.add (
i64.const 0
i64.const 1
nop

))
)

Listing 3.9: Random peephole mutation using e-graph traversal for Listing 3.8
over e-graph Figure 3.6. The textual format is folded for better understanding.

Left
Operand

Right
Operand

containeri64.const 1

Left
Operand

Right
Operand

i64.add

e-class

i64.const 0

e-class
Right

Operand

Left
Operand

container i64.add

e-class

nop

1

3

24

5

Left
Operand

Right
Operand

container

6

Operator-Operand
 relation

Random e-node
selection

e-class

Figure 3.6: E-graph built for rewriting the first instruction of Listing 3.8.

Notice that, within the e-graph showcased in Figure 3.6, the container node
maintains equivalence across all e-classes. Consequently, increasing the depth
parameter in Algorithm 1 would potentially escalate the number of viable variants
infinitely.

Contribution paper and artifact

WASM-MUTATE uses rewriting rules and random traversals over e-graphs to
provide a binary-based solution for WebAssembly diversification.
WASM-MUTATE is fully presented in Cabrera-Arteaga et al. “WASM-MUTATE:
Fast and Effective Binary Diversification for WebAssembly” Computers & Security,
2024. https://www.sciencedirect.com/science/article/pii/S0167404824000
324.
WASM-MUTATE is available at https://github.com/bytecodealliance/wasm-t
ools/tree/main/crates/wasm-mutate as a contribution to the Bytecode Alliance
organization a. The Bytecode Alliance is dedicated to creating secure new software
foundations, building on standards such as WebAssembly and WASI.

ahttps://bytecodealliance.org/

3.4 Comparing CROW, MEWE, and WASM-MUTATE

In this section, we compare CROW, MEWE, and WASM-MUTATE, highlighting
their key differences. These distinctions are summarized in Table 3.1. The table
is organized into columns that represent attributes of each tool: the tool’s name,
input format, core diversification strategy, number of variants generated within
an hour, targeted sections of the WebAssembly binary for diversification, the

https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate
https://bytecodealliance.org/

strength of the generated variants, and the security applications of these variants.
Each row in the table corresponds to a specific tool. Variant strength accounts
for the capability of each tool on generating variants that are preserved after the
JIT compilation of V8 and wasmtime on average. For example, a higher value
of Variant strength indicates that the generated variants are not reversed by JIT
compilers, ensuring that the diversification is preserved in an end-to-end scenario
of a WebAssembly program, i.e., from the source code to its final execution.
Notice that, the data and insights presented in the table are sourced from the
respective papers of each tool and, from the previous discussion in this chapter.

CROW is a compiler-based strategy that needs access to the source code
or its LLVM IR representation to work. Its core is an enumerative synthesis
implementation with functional verification using SMT solvers, ensuring the
functional equivalence of the generated variants. In addition, MEWE extends
the capabilities of CROW, using its generated variants. It goes a step further by
packaging the LLVM IR variants into a WebAssembly multivariant, providing
MVE through execution path randomization. Both CROW and MEWE are
fully automated, requiring no user intervention besides the input source code.
WASM-MUTATE, on the other hand, is a binary-based tool. It uses a set
of rewriting rules and the input Wasm binary to generate program variants,
centralizing its core around random e-graph traversals. Remarkably, WASM-
MUTATE removes the need for compiler adjustments, offering compatibility with
any existing WebAssembly binary.

We have observed several interesting phenomena when aggregating the
empirical data presented in the corresponding papers of CROW, MEWE and
WASM-MUTATE [36, 37, 38]. This can be appreciated in the fourth, fifth and
sixth columns of Table 3.1. We have observed that WASM-MUTATE generates
more unique variants in one hour than CROW and MEWE in at least one order
of magnitude. This is mainly because of three reasons. First, CROW and
MEWE rely on SMT solvers to prove functional equivalence, placing a bottleneck
when generating variants. Second, CROW and MEWE generation capabilities
are limited by the overlapping phenomenon discussed in Section 3.1.3. Third,
WASM-MUTATE can generate variants in any part of the Wasm binary, while
CROW and MEWE are limited to the code and function sections.

On the other hand, CROW and MEWE, by using enumerative synthesis,
ensure that the generated variants are more preserved than the variants created
by WASM-MUTATE. In other words, the transformations generated out of
CROW and MEWE are virtually irreversible by JIT compilers, such as V8 and
wasmtime. This phenomenon is highlighted in the Variants strength column of
Table 3.1, where we show that CROW and MEWE generate variants with 96%
of preservation against 75% of WASM-MUTATE. High preservation is especially
important where the preservation of the diversification is crucial, e.g., to hinder
reverse engineering.

Tool Input Core Variants
in 1h

Target Variants
Strength

Security applications

CROW Source code or
LLVM Ir

Enumerative
synthesis
with functional
equivalence
proved through
SMT solvers

> 1k Code
section

96% Hinders static analysis and
reverse engineering.

MEWE Source code or
LL VM Ir

CROW,
Multivariant
execution

> 1k Code and
Function
sections

96% Hinders static and
dynamic analysis, reverse
engineering and web
timing-based attacks.

WASM-
MUTATE

Wasm binary hand-made
rewriting rules,
e-
graph random
traversals

> 10k All Web-
Assembly
sections

76% Hinders signature-
based identification, and
cache timing side-channel
attacks.

Table 3.1: Comparing CROW, MEWE and WASM-MUTATE. The table columns are the tool’s name, input format, core
diversification strategy, number of variants generated within an hour, targeted sections of the WebAssembly binary, the strength
of the generated variants, and the security applications of these variants. Variant strength accounts for the capability of each
tool on generating variants that are preserved after the JIT compilation of V8 and wasmtime in average. Our three technical
contributions are complementary tools that can be combined.

Takeaway

Our three technical contributions serve as complementary tools that can be
combined. For instance, when the source code for a WebAssembly binary is
either non-existent or inaccessible, WASM-MUTATE offers a viable solution for
generating code variants. On the other hand, CROW and MEWE excel in scenarios
where high preservation is crucial.

3.4.1 Security applications
The final column of Table 3.1 emphasizes the security benefits derived from the
variants produced by our three key technical contributions. One immediate
advantage of altering the structure of WebAssembly binaries across different
variants is the mitigation of signature-based identification, thereby enhancing
resistance to static reverse engineering. Additionally, our tools generate a diverse
array of code variants that are highly preserved. This implies that these variants,
each with their unique WebAssembly code, retain their distinct characteristics
even after being translated into machine code by JIT compilers. This high
level of preservation significantly mitigates the risks associated with side-channel
attacks that target specific machine code instructions, such as port contention
attacks [18]. For instance, if a WebAssembly binary is transformed in such
a manner that its resulting machine code instructions differ from the original,
it becomes more challenging for a side-channel attack. On the other hand, if
the compiler translates the variant into machine code that closely resembles the
original, the side-channel attack could still exploit those instructions to extract
information about the original WebAssembly binary.

Any structural alteration of a WebAssembly program intrinsically impacts its
managed memory during runtime. Memory alterations, either to the unmanaged
or managed memories, have substantial security implications, by eliminating
potential cache timing side-channels [63]. This impact bears significant relevance
for CROW and MEWE as they do not directly address the WebAssembly memory
model. Nevertheless, the WebAssembly code section undergoes significant
modifications by CROW and MEWE. These changes substantially alter the
managed memory by transforming the layout of the WebAssembly binary in
memory once JITed. For example, the constant inferring transformations are
“aggresive” since they considerably change the structure of a WebAssembly
variant. Thus, they considerably affect unmanaged memory elements such as
the returning address of a function. Furthermore, WASM-MUTATE not only
affects managed memory through changes in the WebAssembly program layout
as CROW and MEWE. WASM-MUTATE also adds explicit rewriting rules to
transform unmanaged memory instructions.

Last but not least, our technical contributions enhance security against web
timing-based attacks [147, 148] by creating variants that exhibit a wide range

of execution times, including faster variants compared to the original program.
This strategy is especially prominent in MEWE’s approach, which develops
multivariants functioning on randomizing execution paths, thereby thwarting
attempts at timing-based inference attacks [148]. Adding another layer of benefit
from MEWE, the integration of diverse variants into multivariants can potentially
disrupt dynamic reverse engineering tools such as symbolic executors [96].
Concretely, different control flows through a random discriminator, exponentially
increase the number of possible execution paths, making multivariant binaries
virtually unexplorable.

Takeaway

CROW, MEWE and WASM-MUTATE generate WebAssembly variants that can
be used to enhance security. Overall, they generate variants that are suitable
for hardening static and dynamic analysis, side-channel attacks, and, thwarting
signature-based identification.

In Chapter 4, we present two use cases that showcase the assessment of
WebAssembly variants created by WASM-MUTATE. Chapter 4 serves to bridge
theory with practice, showcasing the tangible impacts and benefits realized
through the deployment of our tools.

4
ASSESSING
SOFTWARE

DIVERSIFICATION
FOR WEBASSEMBLY

If you find that you’re spending all your time on theory, start turning
some attention to practical things; it will improve your theories. If you
find that you’re spending almost all your time on practice, start turning
some attention to theoretical things; it will improve your practice.

— Donald Knuth

In this chapter, we illustrate the application of Software Diversification for both
offensive and defensive purposes. We discuss two selected use cases that
demonstrate the practical applications of our contributions. Additionally,

we discuss the challenges and benefits arising from the application of Software
Diversification to WebAssembly.

4.1 Offensive Diversification: Malware evasion

The primary malicious use of WebAssembly in browsers is cryptojacking [66].
This is due to the essence of cryptojacking, the faster the mining, the
better. Let us illustrate how a malicious WebAssembly binary is involved
into browser cryptojacking. Figure 4.1 illustrates a browser attack scenario:
a practical WebAssembly cryptojacking attack consists of three components: a
WebAssembly binary, a JavaScript wrapper, and a backend cryptominer pool.
The WebAssembly binary is responsible for executing the hash calculations, which
consume significant computational resources. The JavaScript wrapper facilitates
the communication between the WebAssembly binary and the cryptominer pool.

The aforementioned components require several steps to succeed in
cryptomining. First, the victim visits a web page infected with the cryptojacking
code. The web page establishes a channel to the cryptominer pool, which then

55

1

Remote
mining pool
or server

User browser
2

3

Local
Computer

Cloud

Figure 4.1: A remote mining pool server, a JavaScript wrapper and the WebAssembly
binary form the triad of a cryptojacking attack in browser clients.

assigns a hashing job to the infected browser. The WebAssembly cryptominer
calculates thousands of hashes inside the browser. Once the malware server
receives acceptable hashes, it is rewarded with cryptocurrencies for the mining.
Then, the server assigns a new job, and the mining process starts over.

Both antivirus software and browsers have implemented measures to detect
cryptojacking. For instance, Firefox employs deny lists to detect cryptomining
activities [149]. The academic community has also contributed to the body of
work on detecting or preventing WebAssembly-based cryptojacking, as outlined
in Section 2.1.5. However, malicious actors can employ evasion techniques to
circumvent these detection mechanisms. Bhansali et al. are among the first
who have investigated how WebAssembly cryptojacking could potentially evade
detection [67], highlighting the critical importance of this use case. The case
illustrated in the subsequent sections uses Offensive Software Diversification for
evading malware detection in WebAssembly.

4.1.1 Cryptojacking defense evasion
Considering the previous scenario, several techniques can be directly implemented
in browsers to thwart cryptojacking by identifying the malicious WebAssembly
components. Such a defense scenario is illustrated in Figure 4.2, where the
WebAssembly malicious binary is blocked in 3 . The primary aim of our use case
is to investigate the effectiveness of code diversification as a means to circumvent
cryptojacking defenses. Specifically, we assess whether the following evasion
workflow can successfully bypass existing security measures:

1. The user loads a webpage infected with cryptojacking malware, which
leverages network resources for execution—corresponding to 1 and 2 in

1

Malware
detector

Remote
mining pool
or server

User browser

Malware
evasion

technique

2

3

4
5

6

Figure 4.2: Cryptojacking scenario in which the malware detection mechanism is bypassed
by using an evasion technique.

Figure 4.2.

2. A malware detection mechanism (malware oracle) identifies and blocks
malicious WebAssembly binaries at 3 . For example, a network proxy could
intercept and forward these resources to an external detection service via its
API.

3. Anticipating that a specific malware detection system is consistently used
for defense, the attacker swiftly generates a variant of the WebAssembly
cryptojacking malware designed to evade detection at 4 .

4. The attacker delivers the modified binary instead of the original one 5 ,
which initiates the cryptojacking process and compromises the browser 6 .
The detection method is not capable of detecting the malicious nature of the
binary, and the attack is successful.

4.1.2 Methodology
Our aim is to empirically validate the workflow in Figure 4.2, i.e., using Offensive
Software Diversification in evading malware detection systems. To achieve this,
we employ WASM-MUTATE for generating WebAssembly malware variants. In
this study, we categorize malware detection mechanisms as malware oracles,
which can be of two types: binary and numeric. A binary oracle provides a
binary decision, labeling a WebAssembly binary as either malicious or benign. In
contrast, a numeric oracle returns a numerical value representing the confidence
level of the detection.

Definition 3 (Malware oracle) A malware oracle is a detection mechanism that
returns either a binary decision or a numerical value indicating the confidence level
of the detection.

We employ VirusTotal as a numeric oracle and MINOS [28] as a binary oracle.
VirusTotal is an online service that analyzes files and returns a confidence score
in the form of the number of antivirus that flag the input file as malware,
thus qualifying as a numeric oracle. MINOS, on the other hand, converts
WebAssembly binaries into grayscale images and employs a convolutional neural
network for classification. It returns a binary decision, making it a binary oracle.

We use the wasmbench dataset [45] to establish a ground truth. After running
the wasmbench dataset through VirusTotal and MINOS, we identify 33 binaries
that are: 1) flagged as malicious by at least one VirusTotal vendor and, 2) are also
detected by MINOS. Then, to simulate the evasion scenario in Figure 4.2, we use
WASM-MUTATE to generate WebAssembly binary variants to evade malware
detection (4 in Figure 4.2). We use WASM-MUTATE in two configurations:
feedback-guided and stochastic diversification.
Definition 4 (Feedback-guided Diversification) In feedback-guided diversification,
the transformation process of a WebAssembly program is guided by a numeric oracle,
which influences the probability of each transformation. For instance, WASM-MUTATE
can be configured to apply transformations that minimize the oracle’s confidence score.
Note that feedback-guided diversification needs a numeric oracle.

Definition 5 (Stochastic Diversification) Unlike feedback-guided diversification, in
stochastic diversification, each transformation has an equal likelihood of being applied to
the input WebAssembly binary.

Based on the two types of malware oracles and diversification configurations,
we examine three scenarios: 1) VirusTotal with a feedback-guided diversification,
2) VirusTotal with a stochastic diversification, and 3) MINOS with a stochastic
diversification. Notice that, the fourth scenario with MINOS and feedback-guided
diversification is not feasible, as MINOS is a binary oracle and cannot provide
the numerical values required for feedback-guided diversification.

Our evaluation focuses on two key metrics: the success rate of evading
detection mechanisms in VirusTotal and MINOS across the 33 flagged binaries,
and the correctness of the generated variants.
Definition 6 (Evasion rate) This measures the efficacy of WASM-MUTATE in
bypassing malware detection systems. For each flagged binary, we input it into WASM-
MUTATE, configured with the selected oracle and diversification strategy. We then
iteratively apply transformations to the output from the preceding step. This iterative
process is halted either when the binary is no longer flagged by the oracle or when a
maximum of 1000 stacked transformations have been applied (see Definition 2). This
process is repeated with 10 random seeds per binary to simulate 10 different evasion
experiments per binary.

Definition 7 (Correctness) This validates the functional equivalence of the variants
generated by WASM-MUTATE compared to the original binary. We execute the

variants that entirely evade VirusTotal, using controlled and stochastic diversification
configurations with WASM-MUTATE for both metrics. Our selection is limited to
variants that allow us to fully reproduce the three components displayed in Figure 4.1.
We then gather the hashes generated by the cryptojacking binaries and their generation
speed, comparing these hashes with those from the original binary. If the hashes match,
and the variant executes without error, with the minerpool component validating the
hash, we can consider the variant as functionally equivalent.

4.1.3 Results
In Table 4.1, we present a comprehensive summary of the evasion experiments
presented in [39], focusing on two oracles: VirusTotal and MINOS [28]. The
table is organized into two main categories to separate the results for each
malware oracle. For VirusTotal, we further subdivide the results based on
the two diversification configurations we employ: stochastic and feedback-
guided diversification. In these subsections, the columns indicate the number of
VirusTotal vendors that flag the original binary as malware (#D), the maximum
number of successfully evaded detectors (Max. #evaded), and the average number
of transformations required (Mean #trans.) for each sample. We highlight
in bold text the values for which the stochastic diversification or feedback-
guided diversification setups best, the lower, the better. The MINOS section
solely includes a column that specifies the number of transformations needed
for complete evasion. The table has 33 + 1 rows, each representing a unique
WebAssembly malware study subject. The final row offers the median number of
transformations required for evasion across our evaluated setups and oracles.

Stochastic diversification to evade VirusTotal: We execute a stochastic
diversification with WASM-MUTATE, setting a limit of 1000 iterations for each
binary. In every iteration, we query VirusTotal to determine if the newly
generated binary can elude detection. We repeat this procedure with ten distinct
seeds for each binary, replicating ten different evasion experiments. As the
stochastic diversification section of Table 4.1 illustrates, we successfully produce
variants that fully evade detection for 30 out of 33 binaries. The average amount
of iterations required to produce a variant that evades all detectors oscillates
between 120 and 635 stacked transformations. The mean number of iterations
needed never exceeds 1000 stacked transformations. However, three binaries
remain detectable under the stochastic diversification setup. In these instances,
the algorithm fails to evade 5 out of 31, 6 out of 30, and 5 out of 26 detectors.
This shortfall can be attributed to the maximum number of iterations, 1000,
that we employ in our experiments. Increasing iterations further, however, seems
unrealistic. If certain transformations enlarge the binary size, a significantly large
binary could become impractical due to bandwidth limitations. In summary,
stochastic diversification with WASM-MUTATE markedly reduces the detection
rate by VirusTotal antivirus vendors for cryptojacking malware, achieving total
evasion in 30 out of 33 (90%) cases within the malware dataset.

VirusTotal MINOS [28]
Hash #D Stochastic div. Feedback-guided div.

Max. evaded Mean trans. Max. evaded Mean trans. Mean trans.
47d29959 31 26 N/A 19 N/A 100
9d30e7f0 30 24 N/A 17 N/A 419
8ebf4e44 26 21 N/A 13 N/A 92
c11d82d 20 20 355 20 446 115
0d996462 19 19 401 19 697 24
a32a6f4b 18 18 635 18 625 1
fbdd1efa 18 18 310 18 726 1
d2141ff2 9 9 461 9 781 81
aafff587 6 6 484 6 331 1
046dc081 6 6 404 6 159 33
643116ff 6 6 144 6 436 47
15b86a25 4 4 253 4 131 1
006b2fb6 4 4 282 4 380 1
942be4f7 4 4 200 4 200 29
7c36f462 4 4 236 4 221 85
fb15929f 4 4 297 4 475 1
24aae13a 4 4 252 4 401 980
000415b2 3 3 302 3 34 960
4cbdbbb1 3 3 295 3 72 1
65debcbe 2 2 131 2 33 38
59955b4c 2 2 130 2 33 38
89a3645c 2 2 431 2 107 108
a74a7cb8 2 2 124 2 33 38
119c53eb 2 2 104 2 18 1
089dd312 2 2 153 2 123 68
c1be4071 2 2 130 2 33 38
dceaf65b 2 2 140 2 132 66
6b8c7899 2 2 143 2 33 38
a27b45ef 2 2 145 2 33 33
68ca7c0e 2 2 137 2 33 38
f0b24409 2 2 127 2 11 33
5bc53343 2 2 118 2 33 33
e09c32c5 1 1 120 1 488 15
Median 218 131 38

Table 4.1: The table has two main categories for each malware oracle, corresponding to
the two oracles we use: VirusTotal and MINOS. For VirusTotal, divide the results based
on the two diversification configurations: stochastic and feedback-guided diversification.
We provide columns that indicate the number of VirusTotal vendors that flag the original
binary as malware (#D), the maximum number of successfully evaded detectors (Max.
#evaded), and the average number of transformations required (Mean #trans.) for each
sample. We highlight in bold text the values for which diversification setups are best, where
the lower, the better. The MINOS section includes a column that specifies the number of
transformations needed for complete evasion. The final row offers the median number of
transformations required for evasion across our evaluated setups and oracles.

Feedback-guided diversification to evade VirusTotal: stochastic
diversification does not guide the diversification based on the number of evaded
detectors, it is purely random and has some drawbacks. For example, some
transformations might suppress other transformations previously applied. We
have observed that, by carefully selecting the order and type of transformations
applied, it is possible to evade detection systems in fewer iterations. This
can be appreciated in the results of the feedback-guided diversification part
of Table 4.1. The feedback-guided diversification setup successfully generates
variants that totally evade the detection for 30 out of 33 binaries, it is thus as
good as the stochastic setup. Remarkably, for 21 binaries out of 30, feedback-
guided needs only 40% of the calls the stochastic diversification setup needs,
demonstrating larger efficiency. Moreover, the lower number of transformations
needed to evade detection, compared to the stochastic diversification setup,
highlights the efficacy of the feedback-guided diversification setup in studying
effective transformations. Consequently, malware detection system developers
can leverage feedback-guided diversification to enhance their systems, focusing
on identifying specific transformations.

Stochastic diversification to evade MINOS: Relying exclusively on
VirusTotal for detection could pose issues, particularly given the existence of
specialized solutions for WebAssembly, which differ from the general-purpose
vendors within VirusTotal. In Section 2.1.5 we highlight several examples of
such solutions. Yet, for its simplicity, we extend this experiment by using
MINOS [28], an antivirus specifically designed for WebAssembly. The results
of evading MINOS can be seen in the final column of Table 4.1. The bottom
row of Table 4.1 highlights that fewer iterations are required to evade MINOS
than VirusTotal throughWebAssembly diversification, indicating a greater ease in
eluding MINOS. The stochastic diversification setup requires a median iteration
count of 218 to evade VirusTotal. In contrast, the feedback-guided diversification
setup necessitates only 131 iterations. Remarkably, a mere 38 iterations are
needed for MINOS. WASM-MUTATE evaded detection for 8 out of 33 binaries
in a single iteration. This result implies the susceptibility of the MINOS model
to binary diversification.

WebAssembly variants correctness: To evaluate the correctness of the
malware variants created with WASM-MUTATE, we focused on six binaries that
we could build and execute end-to-end, as these had all three components outlined
in Figure 4.1. We select only six binaries because the process of building and
executing the binaries involves three components: the WebAssembly binary, its
JavaScript complement, and the miner pool. These components were not found
for the remaining 24 evaded binaries in the study subjects. For the six binaries,
we then replace the original WebAssembly code with variants generated using
VirusTotal as the malware oracle and WASM-MUTATE for both controlled and

stochastic diversification configurations. We then execute both the original and
the generated variants. We assess the correctness of the variants by examining the
hashes they generate. Our findings show that all variants generated with WASM-
MUTATE are correct, i.e., they generate the correct hashes and execute without
error. Additionally, we found that 19% of the generated variants surpassed the
original cryptojacking binaries in performance.

Reflection

Malware detection presents a challenging and well-known issue [150]. While
there are considerable efforts on preventing malware in WebAssembly, the
current literature acknowledges only metadata (WebAssembly custom sections)
obfuscation or total absence of obfuscation techniques for WebAssembly [26,
27, 29, 30, 28]. As explored in Section 2.2, a software diversification engine
could potentially serve as an obfuscator. We exhibit this potential with WASM-
MUTATE. Moreover, our software diversification tools offer a feasible method to
improve the precision of WebAssembly malware detection systems. Existing tools
could enhance their evaluation dataset of WebAssembly malware by incorporating
the variants generated by WASM-MUTATE.

Contribution paper

WASM-MUTATE generates correct and performant variants of WebAssembly
cryptojacking that successfully evade malware detection. The case discussed in this
section is fully detailed in Cabrera-Arteaga et al. “WebAssembly Diversification
for Malware Evasion” at Computers & Security, 2023 https://www.sciencedir
ect.com/science/article/pii/S0167404823002067.

4.2 Defensive Diversification: speculative side-channel protection

As discussed in Section 2.1, WebAssembly is quickly becoming a cornerstone
technology in backend systems. Leading companies like Cloudflare and Fastly
are championing the integration of WebAssembly into their edge computing
platforms, thereby enabling developers to deploy applications that are both
modular and securely sandboxed. These server-side WebAssembly applications
are generally architected as isolated, single-responsibility services, a model
referred to as Function-as-a-Service (FaaS) [10, 11]. The operational flow of
WebAssembly binaries in FaaS platforms is illustrated in Figure 4.3.

The fundamental advantage of using WebAssembly in FaaS platforms lies in its
ability to encapsulate thousands of WebAssembly binaries within a singular host
process. A developer could compile its source code into a WebAssembly program
suitable for the cloud platform and then submit it (1 in Figure 4.3). This host
process is then disseminated across a network of servers and data centers (2 in
Figure 4.3). These platforms convert WebAssembly programs into native code,

https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://www.sciencedirect.com/science/article/pii/S0167404823002067

Cloud node
Host

process

Upload
Source
Code

Developer
Computer Cloud

Cloud node

X86

HTTP
request

Compile

Memory boundary

X86

Memory isolation
is violated

1

2

3

4

...

Figure 4.3: WebAssembly binaries on FaaS platforms. Developers can submit any
WebAssembly binary to the platform to be executed as a service in a sandboxed and isolated
manner. Yet, WebAssembly binaries are not immune to Spectre attacks.

which is subsequently executed in a sandboxed environment. Host processes can
then instantiate new WebAssembly sandboxes for each client function, executing
them in response to specific user requests with nanosecond-level latency (3 in
Figure 4.3). This architecture inherently isolates WebAssembly binary executions
from each other as well as from the host process, enhancing security.

However, while WebAssembly is engineered with a strong focus on security
and isolation, it is not entirely immune to vulnerabilities such as Spectre attacks
[151, 142] (4 in Figure 4.3). In the sections that follow, we explore how software
diversification techniques can be employed to harden WebAssembly binaries
against such attacks.

4.2.1 Threat model: speculative side-channel attacks
To illustrate the threat model concerning WebAssembly programs in FaaS
platforms, consider the following scenario. Developers, including potentially
malicious actors, have the ability to submit any WebAssembly binary to FaaS
platforms. A malicious actor could then upload a WebAssembly binary that,
once compiled to native code, employs Spectre attacks. Spectre attacks exploit
hardware-based prediction mechanisms to trigger mispredictions, leading to the
speculative execution of specific instruction sequences that are not part of the
original, sequential execution flow. By taking advantage of this speculative
execution, an attacker can potentially access sensitive information stored in
the memory allocated to another WebAssembly instance (including itself by
violating Control Flow Integrity) or even the host process. Therefore, this poses
a significant risk for the overall execution system.

Narayan et al. [142] have categorized potential Spectre attacks on
WebAssembly binaries into three distinct types, each corresponding to a specific

Program Attack
btb_breakout Spectre branch target buffer (btb)
btb_leakage Spectre branch target buffer (btb)
ret2spec Spectre Return Stack Buffer (rsb)
pht Spectre Pattern History Table (pht)

Table 4.2: WebAssembly program name and its respective attack.

hardware predictor being exploited and a particular FaaS scenario: Branch Target
Buffer Attacks, Return Stack Buffer Attacks, and Pattern History Table Attacks
defined as follows:

1. The Spectre Branch Target Buffer (btb) attack exploits the branch target
buffer by predicting the target of an indirect jump, thereby rerouting
speculative control flow to an arbitrary target.

2. The Spectre Return Stack Buffer (rsb) attack exploits the return stack buffer
that stores the locations of recently executed call instructions to predict the
target of ret instructions.

3. The Spectre Pattern History Table (pht) takes advantage of the pattern
history table to anticipate the direction of a conditional branch during the
ongoing evaluation of a condition.

4.2.2 Methodology
Our goal is to empirically validate that Software Diversification can effectively
mitigate the risks associated with Spectre attacks in WebAssembly binaries. The
green-highlighted section in Figure 4.4 illustrates how Software Diversification
can be integrated into the FaaS platform workflow. The core idea is to generate
unique and diverse WebAssembly variants that can be randomized at the time
of deployment. For this use case, we employ WASM-MUTATE as our tool for
Software Diversification.

To empirically demonstrate that Software Diversification can indeed mitigate
Spectre vulnerabilities, we reuse the WebAssembly attack scenarios proposed by
Narayan et al. in their work on Swivel [63]. Swivel is a compiler-based strategy
designed to counteract Spectre attacks on WebAssembly binaries by linearizing
their control flow during machine code compilation. Our approach differs from
theirs in that it is binary-based, compiler-agnostic, and platform-agnostic; we do
not propose altering the deployment or toolchain of FaaS platforms.

To measure the efficacy of WASM-MUTATE in mitigating Spectre, we
diversify four WebAssembly binaries proposed in the Swivel study. The names
of these programs and the specific attacks we examine are available in Table 4.2.
For each of these four binaries, we generate up to 1000 random stacked

Software Diversification

Cloud node
Host

process

Upload
Source
Code

Developer
Computer

Cloud

X86

HTTP
request

Memory boundary

X86

Memory isolation
is violated

...

Figure 4.4: Diversifying WebAssembly binaries to mitigate Spectre attacks in FaaS
platforms.

transformations (see Definition 2) using 100 distinct seeds, resulting in a total of
100,000 variants for each original binary. At every 100th stacked transformation
for each binary and seed, we assess the impact of diversification on the Spectre
attacks by measuring the attack bandwidth for data exfiltration.

Definition 8 (Attack bandwidth) Given data D = {b0, b1, ..., bC} being exfiltrated in
time T and K = k0, k1, ..., kN the collection of correct data bytes, the bandwidth metric
is defined as:

|bi such that bi ∈ K|
T

The previous metric not only captures the success or failure of the attacks but
also quantifies the extent to which data exfiltration is hindered. For example, a
variant that still leaks data but does so at an impractically slow rate would be
considered hardened against the attack.

4.2.3 Results

Figure 4.5 offers a graphical representation of WASM-MUTATE’s influence on
the Swivel original programs: btb_breakout and btb_leakage with the btb
attack. The Y-axis represents the exfiltration bandwidth (see Definition 8).
The bandwidth of the original binary under attack is marked as a blue dashed
horizontal line. In each plot, the variants are grouped in clusters of 100 stacked
transformations. These are indicated by the green violinplots.

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.0

0.5

1.0

1.5

2.0

2.5

B
an

d
w

id
th

(b
/s

)

btb breakout

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0

5

10

15

20

B
an

d
w

id
th

(b
/s

)

btb leakage

Figure 4.5: Impact of WASM-MUTATE over btb_breakout and btb_leakage binaries.
The Y-axis denotes exfiltration bandwidth, with the original binary’s bandwidth under
attack highlighted by a blue marker and dashed line. Variants are clustered in groups of
100 stacked transformations, denoted by green violinplots. Overall, for all 100000 variants
generated out of each original program, 70% have less data leakage bandwidth. After 200
stacked transformations, the exfiltration bandwidth drops to zero.

Population Strength: For the binaries btb_breakout and btb_leakage,
WASM-MUTATE exhibits a high level of effectiveness, generating variants that
leak less information than the original in 78% and 70% of instances, respectively.
For both programs, after applying 200 stacked transformations, the exfiltration
bandwidth drops to zero. This implies that WASM-MUTATE is capable of
synthesizing variants that are entirely protected from the original attack. If
we consider the results in Table 3.1, generating a variant with 200 stacked
transformations can be accomplished in just a matter of seconds for a single
WebAssembly binary.

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.00

0.01

0.02

0.03

B
an

d
w

id
th

(b
/s

)

ret2spec

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.0

0.2

0.4

0.6

0.8

1.0

B
an

d
w

id
th

(b
/s

)

pht

Figure 4.6: Impact of WASM-MUTATE over ret2spec and pht binaries. The Y-
axis denotes exfiltration bandwidth, with the original binary’s bandwidth under attack
highlighted by a blue marker and dashed line. Variants are clustered in groups of
100 stacked transformations, denoted by green violinplots. Overall, for both programs
approximately 70% of the variants have less data leakage bandwidth.

Effectiveness of WASM-MUTATE: As illustrated in Figure 4.6, similarly to
Figure 4.5, WASM-MUTATE significantly impacts the programs ret2spec and
pht when subjected to their respective attacks. In 76% of instances for ret2spec
and 71% for pht, the generated variants demonstrated reduced attack bandwidth
compared to the original binaries. The plots reveal that a notable decrease in
exfiltration bandwidth occurs after applying at least 100 stacked transformations.
While both programs show signs of hardening through reduced attack bandwidth,
this effect is not immediate and requires a substantial number of transformations
to become effective. Additionally, the bandwidth distribution is more varied for
these two programs compared to the two previous ones. Our analysis suggests
a correlation between the reduction in attack bandwidth and the complexity
of the binary being diversified. Specifically, ret2spec and pht are substantially
larger programs, containing over 300,000 instructions, compared to btb_breakout
and btb_leakage, which have fewer than 800 instructions. Therefore, given that
WASM-MUTATE performs one transformation per invocation, the probability of
affecting critical components to hinder attacks decreases in larger binaries.

Disrupting timers: Cache timing side-channel attacks, including for the four
binaries analyzed in this use case, depend on precise timers to measure cache
access times. Disrupting these timers can effectively neutralize the attack
[152]. One key reason our results show variants resilient to Spectre attacks
is the approach of WASM-MUTATE. It creates variants that offer a similar
approach. Our WebAssembly variants introduce perturbations in the timing steps
of WebAssembly variants. This is illustrated in Listing 4.1 and Listing 4.2, where
the former shows the original time measurement and the latter presents a variant
with introduced operations. By introducing additional instructions, the inherent
randomness in the time measurement of a single or a few instructions is amplified,
thereby reducing the timer’s accuracy.

;; Code from original btb_breakout
...
(call $readTimer)
(set_local $end_time)
... access to mem
(i64.sub (get_local $end_time) (get_local $start_time))
(set_local $duration)
...

Listing 4.1: Wasm timer code.

;; Variant code
...
(call $readTimer)
(set_local $end_time)
<inserted instructions>
... access to mem
<inserted instructions>
(i64.sub (get_local $end_time) (get_local $start_time))
(set_local $duration)
...

Listing 4.2: WebAssembly variant with more instructions added in between time
measurement.

Padding speculated instructions: CPUs have a limit on the number of
instructions they can cache. WASM-MUTATE injects instructions to exceed this
limit, effectively disabling the speculative execution of memory accesses. This
approach is akin to padding [153], as demonstrated in Listing 4.3 and Listing 4.4.
Padding disrupts the binary code’s layout in memory, hindering the attacker’s
ability to initiate speculative execution. Even if speculative execution occurs, the
memory access does not proceed as the attacker intended.

;; Code from original btb_breakout
...
;; train the code to jump here (index 1)
(i32.load (i32.const 2000))
(i32.store (i32.const 83)) ;; just prevent optimization
...
;; transiently jump here
(i32.load (i32.const 339968)) ;; S(83) is the secret
(i32.store (i32.const 83)) ;; just prevent optimization

Listing 4.3: Two jump locations. The top one trains the branch predictor, the
bottom one is the expected jump that exfiltrates the memory access.

;; Variant code
...
;; train the code to jump here (index 1)
<inserted instructions>
(i32.load (i32.const 2000))
<inserted instructions>
(i32.store (i32.const 83)) ;; just prevent optimization
...
;; transiently jump here
<inserted instructions>
(i32.load (i32.const 339968)) ;; "S"(83) is the secret
<inserted instructions>
(i32.store (i32.const 83)) ;; just prevent optimization
...

Listing 4.4: WebAssembly variant with more instructions added indindinctly
between jump places.

Managed memory impact: The success in diminishing Spectre attacks is
mainly explained by the fact that WASM-MUTATE synthesizes variants that
effectively alter memory access patterns. We have identified four primary factors
responsible for the divergence in memory accesses among WASM-MUTATE
generated variants. First, modifications to the binary layout—even those that do
not affect executed code—inevitably alter memory accesses within the program’s
stack. Specifically, WASM-MUTATE generates variants that modify the return
addresses of functions, which consequently leads to differences in execution flow
and memory accesses. Second, one of our rewriting rules incorporates artificial
global values into WebAssembly binaries. The access to these global variables
inevitably affects the managed memory (see Section 2.1.3). Third, WASM-
MUTATE injects ’phantom’ instructions which do not aim to modify the outcome
of a transformed function during execution. These intermediate calculations
trigger the spill/reload component of the wasmtime compiler, varying spill and
reload operations. In the context of limited physical resources, these operations
temporarily store values in memory for later retrieval and use, thus creating
diverse managed memory accesses (see the example at Section 3.3.1). Finally,
certain rewriting rules implemented by WASM-MUTATE replicate fragments of
code, e.g., performing commutative operations. These code segments may contain
memory accesses, and while neither the memory addresses nor their values change,
the frequency of these operations does.

Reflection

Beyond Spectre, one can use WASM-MUTATE to mitigate other side-channel
attacks. For instance, port contention attacks [18] rely on the execution of specific
instructions for a successful attack. Not only WASM-MUTATE but also our
other tools, can alter those instructions, thereby mitigating the attack [120]. The
effectiveness of WASM-MUTATE, coupled with its ability to generate numerous
variants, establishes it as an apt tool for mitigating side-channel attacks. Consider,
for example, applying this on a global FaaS platform scale. In this scenario, one
could deploy a unique, hardened variant for each machine and even for every fresh
WebAssembly spawned per user request.

Contribution paper

WASM-MUTATE crafts WebAssembly binaries that are resilient to Spectre-like
attacks. The case discussed in this section is fully detailed in Cabrera-Arteaga et al.
“WASM-MUTATE: Fast and Effective Binary Diversification for WebAssembly”
Computers & Security, 2024 https://www.sciencedirect.com/science/articl
e/pii/S0167404824000324.

4.3 Conclusions

In this chapter, we explore Offensive and Defensive Software Diversification
applied to WebAssembly. Offensive Software Diversification highlights both the
potential and the latent security risks in applying Software Diversification to
WebAssembly malware. Our findings suggest potential enhancements to the
automatic detection of cryptojacking malware in WebAssembly, e.g., by stressing
their resilience with WebAssembly malware variants. Conversely, Defensive
Software Diversification serves as a proactive guard, specifically designed to
mitigate the risks associated with Spectre attacks.

Moreover, we have conducted experiments with various use cases that are
not shown in this chapter. For instance, CROW [36] excels in generating
WebAssembly variants that minimize side-channel noise, thereby bolstering
defenses against potential side-channel attacks. Alternatively, deploying
multivariants from MEWE [37] can thwart high-level timing-based side-channels
[147]. Specifically, we conducted experiments on the round-trip times of the
generated multivariants and concluded that, at a high level, the timing side-
channel information cannot discriminate between variants.

https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://www.sciencedirect.com/science/article/pii/S0167404824000324

5
CONCLUSIONS AND

FUTURE WORK

You’re bound to be unhappy if you optimize everything.
— Donald Knuth

The growing adoption of WebAssembly requires hardening techniques. This
thesis contributes to this effort with a comprehensive set of methods
and tools for Software Diversification for WebAssembly. We introduce

three technical contributions in this dissertation: CROW, MEWE, and WASM-
MUTATE. Additionally, we present two use cases for exploiting the diversification
created for WebAssembly programs. In this chapter, we summarize the technical
contributions of this dissertation, including an overview of the empirical findings
of our research. Finally, we discuss future research directions in WebAssembly
Software Diversification.

5.1 Summary of technical contributions

This thesis expands the field of Software Diversification for WebAssembly
by implementing two distinct methods: compiler-based and binary-based
approaches. Taking source code and LLVM bitcode as input, the compiler-based
method generates WebAssembly variants. It uses enumerative synthesis and SMT
solvers to produce numerous functionally equivalent variants. Importantly, these
generated variants can be converted into multivariant binaries, thus enabling
execution path randomization. Our compiler-based approach specializes in
producing high-preservation variants. However, the use of SMT solvers for
functional verification lowers the diversification speed when compared with the
binary-based method. Furthermore, this method can only modify the code and
function sections of WebAssembly binaries.

Moreover, our binary-based strategy uses random e-graph traversals to create
variants. This approach eliminates the need for modifications to existing
compilers, ensuring compatibility with all existing WebAssembly binaries.
Additionally, it offers a swift, efficient and novel method for generating variants
through inexpensive random e-graph traversals. Consequently, our binary-based
approach can produce variants at a scale of at least one order of magnitude

71

larger than our compiler-based approach. The binary-based method can generate
variants by transforming any segment of the Wasm binary. However, the
preservation of the generated variants is lower than the compiler-based approach.

We have developed three open-source tools that are publicly accessible:
CROW, MEWE, and WASM-MUTATE. CROW and MEWE explore a compiler-
based approach, whereas WASM-MUTATE employs a method based on binary.
These tools automate the process of diversification, thereby increasing their
practicality for deployment. At present, WASM-MUTATE is integrated into the
wasmtime project1 to improve testing. Our tools are complementary, providing
combined utility. For instance, when the source code for a WebAssembly binary
is unavailable, WASM-MUTATE offers an efficient solution for the generation
of code variants. On the other hand, CROW and MEWE are particularly
suited for scenarios that require a high level of variant preservation. Finally,
one can use CROW and MEWE to generate a set of variants, which can then
serve as rewriting rules for WASM-MUTATE. Moreover, when practitioners need
to quickly generate variants, they could employ WASM-MUTATE, despite a
potential decrease in the preservation of variants.

5.2 Key results of the thesis

We demonstrate the practical application of Offensive Software Diversification
in WebAssembly. In particular, we diversify 33 WebAssembly cryptomalware
automatically, generating numerous variants. These variants successfully evade
detection by state-of-the-art malware detection systems. Our research confirms
the existence of opportunities for the malware detection community to strengthen
the automatic detection of cryptojacking WebAssembly malware. Specifically,
developers can improve the detection of WebAssembly malware by using multiple
malware oracles. Additionally, these practitioners could employ feedback-
guided diversification to identify specific transformations their implementation
is susceptible to. For instance, our study found that the addition of arbitrary
custom sections to WebAssembly binaries is a highly effective transformation for
evading detection. This logic also applies to other transformations, such as adding
unreachable code, another effective method for evading detection.

Moreover, our techniques enhance overall security from a Defensive Software
Diversification perspective. We facilitate the deployment of unique, diversified
and hardened WebAssembly binaries. As previously demonstrated, WebAssembly
variants produced by our tools exhibit improved resistance to side-channel
attacks. Our tools generate variants by modifying malicious code patterns such
as embedded timers used to conduct timing side-channel attacks. Simultaneously,
they can produce variants that introduce noise into the execution side-channels
of the original program, while altering the memory layout of the JITed code
generated by the host engine.

1https://github.com/bytecodealliance/wasm-tools

https://github.com/bytecodealliance/wasm-tools

Remarkably, we ensure the rapid transformation of WebAssembly binaries,
creating thousands of variants in a matter of minutes. This swift generation of
variants is particularly advantageous in highly dynamic scenarios such as FaaS
and CDN platforms. In this work, we do not discuss this case in depth. Yet, we
have empirically tested the effectiveness of moving target defense techniques [37].
These tests were conducted on the Fastly edge computing platform. In this
scenario, we incorporate multivariant executions [37]. Fastly can redeploy a
WebAssembly binary across its 73 data centers worldwide in 13 seconds on
average. This enables the practical deployment of a unique variant per node
using our tools. However, a 13-second window may still pose a risk despite each
node potentially hosting a distinct WebAssembly variant. To mitigate this, one
could use multivariant binaries, invoking a unique variant every time the node
is invoked. Our tools can generate dozens of unique variants every few seconds,
each serving as a multivariant binary packaging thousands of other variants. This
illustrates the real-world application of Defensive Software Diversification to a
WebAssembly standalone scenario.

5.3 Future Work

Along with this dissertation, we have highlighted several open challenges related
to Software Diversification in WebAssembly. These challenges open up several
avenues for future research. In the following, we outline three concrete directions.

5.3.1 Data augmentation for Machine Learning on WebAssembly
programs
Compared to established environments, the WebAssembly ecosystem is relatively
new. This makes the collection of WebAssembly program samples notably
expensive [45, 154]. According to a recent study by Hilbig et al., the global count
of WebAssembly binaries is approximately 20,000 [45]. This number is small when
contrasted with the massive repositories of 1.5 million and 1.7 million packages
in npm and PyPI, respectively. Intriguingly, this study also discloses that half
of these WebAssembly binaries originated from our tools and public repositories,
suggesting that the actual count of unique, real-world WebAssembly programs is
just over 10,000. This scarcity of WebAssembly datasets presents considerable
obstacles for machine learning analysis tools, which typically need substantial
data volumes for effective training and calibration [155]. Software diversification
serves as a pivotal strategy to address this limitation by simulating a broad range
of potential software behaviors and scenarios. Specifically, the augmentation of
the WebAssembly dataset can be achieved through it.

Augmentation of program datasets has proven effective in enhancing the
accuracy of classification models [156, 157, 158]. In general, data augmentation
can improve model performance by increasing the volume of training examples
via data synthesis. Moreover, it might expose edge cases and rare conditions,

thus enabling the development of better defenses against unforeseen cases. In
the case of malware evasion, this approach might harden the robustness of
detection systems. Furthermore, this strategy might facilitate the identification
and reduction of biases within WebAssembly program datasets. Finally, our tools
provide comprehensive details on the variant generation process. This allows us
to define and use more precise metrics between programs and variants to train
a model for variant detection [159]. For instance, with the e-graphs in WASM-
MUTATE, we can easily establish a metric to measure the distance between two
programs. To sum up, harnessing our tools to enhance the training of models
within the WebAssembly ecosystem might be a promising research area.

5.3.2 Improving WebAssembly malware detection via canonicalization

Malware detection is a well-known problem in the field of computer security, as
outlined in works like Cohen’s 1987 study on computer viruses [150]. This issue is
exacerbated in environments where predictability is high and malware is expected
to be replicated identically across multiple victims. In such scenarios, attackers
can exploit this predictability to their advantage. For example, malicious
actors could craft functionally equivalent malware to evade detection by malware
detection systems. Indeed, our research has shown that employing Software
Diversification can be an effective method for evading malware detection systems.
This technique involves creating varied versions of a program, thereby reducing
its predictability and making detection more challenging.

A future research area could be to tackle the challenge of refining the precision
of malware detection systems. This can be achieved by evaluating the effectiveness
of program normalization [160]. This strategy might involve transforming a
program into a standardized or “canonical” form [161]. A malware detection
system in a pre-existing database is more likely to detect the canonical form. Just
as a program can be transformed into multiple functionally equivalent variants,
the inverse process is also possible. In other words, two functionally equivalent
programs can be transformed into the same original program.

Two concrete strategies could be explored. First, employing WASM-MUTATE
for program normalization. By reusing the e-graph data structures to use the
shortest possible replacements, one can secure the canonical representation of
the input program. Although normalization methods are not new, previous
studies have grounded malware detection on the normalization of lifted code
[162, 163]. WebAssembly does not need to be lifted, given that its binary format
is innately platform-agnostic. Thus, one can directly normalize the WebAssembly
binary. Secondly, one can pre-compile WebAssembly binaries at a minimal cost.
Specifically, a WebAssembly binary could initially undergo JIT compilation into
machine code. Overall, either of these two strategies aims to substantially reduce
the number of malware variants that need consideration, thereby easing the task
of classifiers in detecting harmful software.

5.3.3 Oneshot Diversification
Oneshot diversification denotes the automatic creation of a unique software
program variant with each installation or distribution. This procedure entails
systematic alterations to the original program. The objective is to ensure that
each software copy is distinctive from all others. Contrary to randomization,
oneshot diversification usually happens during the software’s distribution or
installation phase. The term “oneshot” describes the diversification’s static
nature following its one-time implementation per installation. Once used,
the diversified program is discarded. In summary, oneshot diversification
bolsters security and heightens reliability by diminishing the predictability of
software. We therefore plan to investigate the feasibility of one-shot diversification
in WebAssembly. However, we foresee several challenges, particularly the
optimization of our previously presented tools.

In the context of WebAssembly, this process presents particularly challenging
aspects since it is highly dynamic [17]. For instance, within a browser context,
we need to ensure the WebAssembly binary varies not only per browser instance
but also per tab process (webpage tab). In the backend, we must guarantee
that the WebAssembly binary is unique per cold spawn [50, 63]. Hence, it
becomes necessary to ensure that the diversification process is both rapid and
efficient, capable of generating a vast number of variants within a brief timespan.
Specifically, this entails producing millions of unique and diverse variants every
second.

In addition to swift variant generation, a targeted diversification process is also
necessary. For example, as shown in Chapter 4, feedback-guided diversification
can quickly produce variants with specific objectives, such as evading malware.
Therefore, while we diversify, we need to be able to discard those variants that
offer fewer benefits based on custom feedback functions. For example, this
process might require the inclusion of concepts like performance impact, variant’s
distribution, and variant’s management. Performance impact, in particular,
needs careful evaluation, given that WebAssembly is often used for applications
sensitive to performance. Furthermore, distributing and managing diversified
WebAssembly modules could become complex, especially due to the lack of
a standard for WebAssembly module management or registry [12]. Besides,
this complexity includes managing updates and ensuring compatibility across
all diversified instances.

REFERENCES

[1] M. R. Cox, Cinderella: Three hundred and forty-five variants of Cinderella,
Catskin, and Cap o’Rushes. No. 31, Folk-lore Society, 1893.

[2] Tim Berners-Lee, “The WorldWideWeb Browser.” https://www.w3.org/P
eople/Berners-Lee/WorldWideWeb.html, 1990.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The Essence of JavaScript,” in
ECOOP 2010 - Object-Oriented Programming, vol. 6183, pp. 126–150, 2010.

[4] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, E. Weippl,
and F. Wien, “Fast and Reliable Browser Identification With Javascript
Engine Fingerprinting,” in Web 2.0 Workshop on Security and Privacy
(W2SP), vol. 5, p. 4, Citeseer, 2013.

[5] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript Instrumentation
for Browser Security,” in Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pp. 237–249,
2007.

[6] Y. Ko, T. Rezk, and M. Serrano, “SecureJS Compiler: Portable Memory
Isolation in JavaScript,” in SAC ’21: The 36th ACM/SIGAPP Symposium
on Applied Computing, pp. 1265–1274, 2021.

[7] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the Web Up to Speed With
WebAssembly,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017, pp. 185–200, 2017.

[8] C. Watt, “Mechanising and Verifying the WebAssembly Specification,” in
Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP, pp. 53–65, 2018.

[9] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan,
“Gobi: WebAssembly as a Practical Path to Library Sandboxing,” CoRR,
vol. abs/1912.02285, 2019.

[10] P. Mendki, “Evaluating Webassembly Enabled Serverless Approach for Edge
Computing,” in 2020 IEEE Cloud Summit, pp. 161–166, 2020.

[11] M. Jacobsson and J. Willén, “Virtual Machine Execution for Wearables
Based on WebAssembly,” in 13th EAI International Conference on Body Area
Networks, BODYNETS, pp. 381–389, 2018.

77

https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html

[12] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “WebAssembly as a
Common Layer for the Cloud-Edge Continuum,” in Proceedings of the 2nd
Workshop on Flexible Resource and Application Management on the Edge,
FRAME ’22, p. 3–8, 2022.

[13] M. Chadha, N. Krueger, J. John, A. Jindal, M. Gerndt, and S. Benedict,
“Exploring the Use of WebAssembly in HPC,” in Proceedings of the 28th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, PPoPP ’23, p. 92–106, 2023.

[14] J. Cabrera-Arteaga, M. Monperrus, and B. Baudry, “Scalable Comparison of
JavaScript V8 Bytecode Traces,” in Proceedings of the 11th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages,
VMIL at SPLASH 2019, pp. 22–31, 2019.

[15] NSA, “National Cyber Leap Year.” https://www.nitrd.gov/nitrdgroups/
index.php?title=National_Cyber_Leap_Year, 2021.

[16] G. Goth, “Addressing the Monoculture,” IEEE Security & Privacy, vol. 1,
no. 06, pp. 8–10, 2003.

[17] M. N. Hoque and K. A. Harras, “WebAssembly for Edge Computing:
Potential and Challenges,” IEEE Communications Standards Magazine,
vol. 6, no. 4, pp. 68–73, 2022.

[18] T. Rokicki, C. Maurice, M. Botvinnik, and Y. Oren, “Port Contention Goes
Portable: Port Contention Side Channels in Web Browsers,” in ASIA CCS
’22: ACM Asia Conference on Computer and Communications Security,
pp. 1182–1194, 2022.

[19] S. Song, S. Park, and D. Kwon, “metaSafer: A Technique to Detect Heap
Metadata Corruption in WebAssembly,” IEEE Access, vol. 11, pp. 124887–
124898, 2023.

[20] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again:
Binary Security of WebAssembly,” in 29th USENIX Security Symposium,
pp. 217–234, 2020.

[21] Q. Stiévenart, C. D. Roover, and M. Ghafari, “Security Risks of Porting
C Programs to Webassembly,” in SAC ’22: The 37th ACM/SIGAPP
Symposium on Applied Computing, pp. 1713–1722, 2022.

[22] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by Key-
extraction Cache Attacks from Portable Code,” IACR Cryptol. ePrint Arch.,
p. 119, 2018.

https://www.nitrd.gov/nitrdgroups/index.php?title=National_Cyber_Leap_Year
https://www.nitrd.gov/nitrdgroups/index.php?title=National_Cyber_Leap_Year

[23] G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using
Return Stack Buffers,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS, pp. 2109–2122, 2018.

[24] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “Thieves in the
Browser: Web-based Cryptojacking in the Wild,” in Proceedings of the
14th International Conference on Availability, Reliability and Security, ARES
2019, Canterbury, UK, August 26-29, 2019, pp. 4:1–4:10, ACM, 2019.

[25] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selçuk, “In-
browser Cryptomining for Good: An Untold Story,” in IEEE International
Conference on Decentralized Applications and Infrastructures, DAPPS 2021,
Online Event, August 23-26, 2021, pp. 20–29, IEEE, 2021.

[26] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, and
G. Vigna, “MineSweeper: An In-depth Look into Drive-by Cryptocurrency
Mining and Its Defense,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS, pp. 1714–1730, 2018.

[27] A. Romano, Y. Zheng, and W. Wang, “MinerRay: Semantics-aware
Analysis for Ever-evolving Cryptojacking Detection,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020, pp. 1129–1140, IEEE, 2020.

[28] F. N. Naseem, A. Aris, L. Babun, E. Tekiner, and A. S. Uluagac, “MINOS:
A Lightweight Real-time Cryptojacking Detection System,” in 28th Annual
Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021, The Internet Society, 2021.

[29] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “SEISMIC: SEcure
In-lined Script Monitors for Interrupting Cryptojacks,” in Computer Security
- 23rd European Symposium on Research in Computer Security, ESORICS,
vol. 11099, pp. 122–142, 2018.

[30] J. D. P. Rodriguez and J. Posegga, “RAPID: Resource and API-based
Detection Against In-browser Miners,” in Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, December 03-07, 2018, pp. 313–326, ACM, 2018.

[31] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, “Outguard: Detecting In-browser Covert
Cryptocurrency Mining in the Wild,” in The World Wide Web Conference,
WWW, pp. 840–852, 2019.

[32] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow,
and W. Streilein, “Survey of Cyber Moving Targets,” Massachusetts Inst of
Technology Lexington Lincoln Lab, No. MIT/LL-TR-1166, 2013.

[33] F. B. Cohen, “Operating System Protection Through Program Evolution.,”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[34] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer
Systems,” in Proceedings. The Sixth Workshop on Hot Topics in Operating
Systems (Cat. No.97TB100133), pp. 67–72, 1997.

[35] M. Eichin and J. Rochlis, “With microscope and tweezers: an analysis of the
Internet virus of November 1988,” in Proceedings. 1989 IEEE Symposium on
Security and Privacy, pp. 326–343, 1989.

[36] J. C. Arteaga, O. F. Malivitsis, O. L. V. Pérez, B. Baudry, and M. Monperrus,
“Crow: Code diversification for webassembly,” in Proceedings of MadWEB,
NDSS, 2021.

[37] J. Cabrera-Arteaga, P. Laperdrix, M. Monperrus, and B. Baudry, “Multi-
variant Execution at the Edge,” in Proceedings of the 9th ACM Workshop on
Moving Target Defense, MTD, pp. 11–22, ACM, 2022.

[38] J. Cabrera-Arteaga, N. Fitzgerald, M. Monperrus, and B. Baudry, “WASM-
MUTATE: Fast and Effective Binary Diversification for WebAssembly,”
Computers & Security, 2024.

[39] J. Cabrera-Arteaga, M. Monperrus, T. Toady, and B. Baudry, “WebAssembly
Diversification for Malware Evasion,” Computers & Security, vol. 131,
p. 103296, 2023.

[40] J. Cabrera Arteaga, “Artificial Software Diversification for WebAssembly,”
No. 2022:52 in TRITA-EECS-AVL, p. 112, 2022. https://urn.kb.se/reso
lve?urn=urn:nbn:se:kth:diva-317331.

[41] “Webassembly system interface.” https://github.com/WebAssembly/WASI,
2021.

[42] D. Bryant, “WebAssembly Outside the Browser: A New Foundation for
Pervasive Computing,” in Proc. of ICWE 2020, pp. 9–12, 2020.

[43] B. Spies and M. Mock, “An Evaluation of WebAssembly in Non-web
Environments,” in XLVII Latin American Computing Conference, CLEI
2021, Cartago, Costa Rica, October 25-29, 2021, pp. 1–10, IEEE, 2021.

[44] E. Wen and G. Weber, “Wasmachine: Bring IoT up to Speed with A
WebAssembly OS,” in 2020 IEEE International Conference on Pervasive
Computing and Communications Workshops, PerCom Workshops 2020,
Austin, TX, USA, March 23-27, 2020, pp. 1–4, IEEE, 2020.

https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-317331
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-317331
https://github.com/WebAssembly/WASI

[45] A. Hilbig, D. Lehmann, and M. Pradel, “An Empirical Study of Real-world
WebAssembly Binaries: Security, Languages, Use Cases,” in WWW ’21: The
Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
pp. 2696–2708, 2021.

[46] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
Performance of Webassembly Applications,” in Proceedings of the 21st ACM
Internet Measurement Conference, IMC ’21, p. 533–549, 2021.

[47] L. Wagner, M. Mayer, A. Marino, A. S. Nezhad, H. Zwaan, and I. Malavolta,
“On the Energy Consumption and Performance of WebAssembly Binaries
across Programming Languages and Runtimes in IoT,” in Proceedings of
the 27th International Conference on Evaluation and Assessment in Software
Engineering, EASE 2023, Oulu, Finland, June 14-16, 2023, pp. 72–82, ACM,
2023.

[48] B. L. Titzer, “Whose baseline compiler is it anyway?,” arXiv e-prints,
p. arXiv:2305.13241, May 2023.

[49] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris,
R. Mikkola, and O. Beletski, “WebAssembly Modules as Lightweight
Containers for Liquid IoT Applications,” in Proceedings of Web Engineering
- 21st International Conference, ICWE, vol. 12706, pp. 328–336, 2021.

[50] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer,
“Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge,” in
Middleware ’20: 21st International Middleware Conference, pp. 265–279,
2020.

[51] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Comput. Surv., vol. 50, apr 2017.

[52] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld, “SecWasm: Information
Flow Control for WebAssembly,” in Static Analysis - 29th International
Symposium, SAS, vol. 13790 of Lecture Notes in Computer Science, pp. 74–
103, Springer, 2022.

[53] T. Brito, P. Lopes, N. Santos, and J. F. Santos, “Wasmati: An efficient static
vulnerability scanner for WebAssembly,” Comput. Secur., vol. 118, p. 102745,
2022.

[54] F. Marques, J. Fragoso Santos, N. Santos, and P. Adão, “Concolic Execution
for WebAssembly,” Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[55] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-wasm: Type-
driven Secure Cryptography for the Web Ecosystem,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 77:1–77:29, 2019.

[56] R. Tsoupidi, M. Balliu, and B. Baudry, “Vivienne: Relational Verification
of Cryptographic Implementations in WebAssembly,” in IEEE Secure
Development Conference, SecDev 2021, Atlanta, GA, USA, October 18-20,
2021, pp. 94–102, IEEE, 2021.

[57] Q. Stiévenart and C. De Roover, “Wassail: A WebAssembly Static Analysis
Library,” in Fifth International Workshop on Programming Technology for
the Future Web, 2021.

[58] F. Breitfelder, T. Roth, L. Baumgärtner, and M. Mezini, “WasmA: A Static
WebAssembly Analysis Framework for Everyone,” in IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER,
pp. 753–757, 2023.

[59] W. Fu, R. Lin, and D. Inge, “TaintAssembly: Taint-based Information Flow
Control Tracking for WebAssembly,” CoRR, vol. abs/1802.01050, 2018.

[60] Q. Stiévenart, D. Binkley, and C. De Roover, “Dynamic Slicing of
WebAssembly Binaries,” in 39th IEEE International Conference on Software
Maintenance and Evolution, IEEE, 2023.

[61] Q. Stiévenart, D. W. Binkley, and C. D. Roover, “Static Stack-preserving
Intra-procedural Slicing of WebAssembly Binaries,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pp. 2031–2042, ACM, 2022.

[62] D. Lehmann and M. Pradel, “Wasabi: A Framework for Dynamically
Analyzing WebAssembly,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, pp. 1045–1058, 2019.

[63] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. M. Tullsen, and
D. Stefan, “Swivel: Hardening WebAssembly against Spectre,” in 30th
USENIX Security Symposium, USENIX, pp. 1433–1450, 2021.

[64] M. Kolosick, S. Narayan, E. Johnson, C. Watt, M. LeMay, D. Garg, R. Jhala,
and D. Stefan, “Isolation Without Taxation: Near-Zero-cost Transitions for
WebAssembly And SFI,” Proc. ACM Program. Lang., vol. 6, no. POPL,
pp. 1–30, 2022.

[65] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan,
and F. Brown, “WaVe: A Verifiably Secure WebAssembly Sandboxing
Runtime,” in 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023, pp. 2940–2955, IEEE, 2023.

[66] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “New Kid on the Web:
A Study on the Prevalence of WebAssembly in the Wild,” in Detection of
Intrusions and Malware, and Vulnerability Assessment - 16th International
Conference, DIMVA, vol. 11543, pp. 23–42, 2019.

[67] S. Bhansali, A. Aris, A. Acar, H. Oz, and A. S. Uluagac, “A First Look at
Code Obfuscation for WebAssembly,” in WiSec ’22: 15th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pp. 140–145, 2022.

[68] B. Baudry and M. Monperrus, “The Multiple Facets of Software Diversity:
Recent Developments in Year 2000 and Beyond,” ACM Comput. Surv.,
vol. 48, no. 1, pp. 16:1–16:26, 2015.

[69] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering
- Foundations, Principles, and Techniques. Springer, 2005.

[70] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. C. Rinard,
“Managing Performance vs. Accuracy Trade-offs With Loop Perforation,”
in SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), pp. 124–134, 2011.

[71] Avizienis and Kelly, “Fault Tolerance by Design Diversity: Concepts and
Experiments,” Computer, vol. 17, no. 8, pp. 67–80, 1984.

[72] T. Y. Chen, F. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive Random Testing:
The ART of test case diversity,” J. Syst. Softw., vol. 83, no. 1, pp. 60–66, 2010.

[73] T. Jackson, On the Design, Implications, and Effects of Implementing
Software Diversity for Security. PhD thesis, University of California, Irvine,
2012.

[74] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification
and survey of analysis strategies for software product lines,” ACM Comput.
Surv., vol. 47, jun 2014.

[75] G. R. Lundquist, V. Mohan, and K. W. Hamlen, “Searching for Software
Diversity: Attaining Artificial Diversity through Program Synthesis,” in
Proceedings of the 2016 New Security Paradigms Workshop, NSPW ’16,
p. 80–91, 2016.

[76] P. Koopman and J. DeVale, “Comparing the robustness of POSIX
operating systems,” in Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), pp. 30–37,
1999.

[77] I. Gashi, P. Popov, and L. Strigini, “Fault Diversity among Off-The-Shelf
SQL Database Servers,” in Proceedings of the 2004 International Conference
on Dependable Systems and Networks, DSN ’04, p. 389, 2004.

[78] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,” IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, pp. 96–109, 1986.

[79] B. Randell, “System Structure for Software Fault Tolerance,” SIGPLAN
Not., vol. 10, p. 437–449, apr 1975.

[80] N. Harrand, Software Diversity for Third-Party Dependencies. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 2022.

[81] J. V. Cleemput, B. Coppens, and B. D. Sutter, “Compiler Mitigations for
Time Attacks on Modern X86 Processors,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 23:1–23:20, 2012.

[82] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided Automated Software Diversity,” in Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2013, Shenzhen, China, February 23-27, 2013, pp. 23:1–23:11, IEEE
Computer Society, 2013.

[83] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation: An
Efficient Approach to Combat a Board Range of Memory Error Exploits,”
in Proceedings of the USENIX Security Symposium, 2003.

[84] S. Bhatkar and D. C. DuVarney, “Efficient Techniques for Comprehensive
Protection from Memory Error Exploits,” in Proceedings of the 14th USENIX,
2005.

[85] K. Pettis and R. C. Hansen, “Profile Guided Code Positioning,” in Proceedings
of the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (PLDI), pp. 16–27, 1990.

[86] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting
Cache Side-channel Attacks Through Dynamic Software Diversity,” in 22nd
Annual Network and Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2015, The Internet Society, 2015.

[87] A. Romano, D. Lehmann, M. Pradel, and
W. Wang, “Wobfuscator: Obfuscating JavaScript Malware via Opportunistic
Translation to WebAssembly,” in 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP), pp. 1101–1116, may 2022.

[88] M. T. Aga and T. M. Austin, “Smokestack: Thwarting DOP Attacks
with Runtime Stack Layout Randomization,” in IEEE/ACM International
Symposium on Code Generation and Optimization, CGO, pp. 26–36, 2019.

[89] S. Lee, H. Kang, J. Jang, and B. B. Kang, “SaVioR: Thwarting Stack-
based Memory Safety Violations by Randomizing Stack Layout,” IEEE Trans.
Dependable Secur. Comput., vol. 19, no. 4, pp. 2559–2575, 2022.

[90] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended Protection
against Stack Smashing Attacks without Performance Loss,” in 22nd Annual
Computer Security Applications Conference (ACSAC 2006), 11-15 December
2006, Miami Beach, Florida, USA, pp. 429–438, IEEE Computer Society,
2006.

[91] Y. Xu, Y. Solihin, and X. Shen, “MERR: Improving Security of
Persistent Memory Objects via Efficient Memory Exposure Reduction and
Randomization,” in ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, pp. 987–1000, 2020.

[92] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-injection
Attacks With Instruction-set Randomization,” in Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS, pp. 272–
280, 2003.

[93] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi,
“Randomized Instruction Set Emulation to Disrupt Binary Code Injection
Attacks,” in Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS, pp. 281–289, 2003.

[94] M. Chew and D. Song, “Mitigating Buffer Overflows by Operating System
Randomization,” Tech. Rep. CS-02-197, Carnegie Mellon University, 2002.

[95] D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J. Lanet,
“Runtime Code Polymorphism as a Protection Against Side Channel
Attacks,” in Proceedings of Information Security Theory and Practice - 10th
IFIP WG 11.2 International Conference, WISTP, vol. 9895, pp. 136–152,
2016.

[96] S. Cao, N. He, Y. Guo, and H. Wang, “WASMixer: Binary Obfuscation for
WebAssembly,” CoRR, vol. abs/2308.03123, 2023.

[97] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” tech. rep., Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[98] M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. Saw, and R. Venkatesan,
“The Superdiversifier: Peephole Individualization for Software Protection,”

in Proceedings of Advances in Information and Computer Security, Third
International Workshop on Security, IWSEC 2008, vol. 5312, pp. 100–120,
2008.

[99] M. Henry, “Superoptimizer: A Look at the Smallest Program,” ACM
SIGARCH Computer Architecture News, vol. 15, pp. 122–126, Nov 1987.

[100] V. Le, M. Afshari, and Z. Su, “Compiler Validation via Equivalence Modulo
Inputs,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, pp. 216–226, 2014.

[101] B. R. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic
Program Alignment for Equivalence Checking,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pp. 1027–1040, 2019.

[102] V. Le, C. Sun, and Z. Su, “Finding Deep Compiler Bugs via Guided Stochastic
ProgramMutation,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, p. 386–399, 2015.

[103] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” vol. 15, p. 281–312, sep 2014.

[104] B. Baudry, S. Allier, and M. Monperrus, “Tailored source code
transformations to synthesize computationally diverse program variants,”
ISSTA 2014, p. 149–159, 2014.

[105] M. Zalewski, “American Fuzzy Lop,” 2017.

[106] K. Zhang, D. Wang, J. Xia, W. Y. Wang, and L. Li, “ALGO:
Synthesizing Algorithmic Programs with Generated Oracle Verifiers,” CoRR,
vol. abs/2305.14591, 2023.

[107] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340, 2008.

[108] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen,
“Counterexample Guided Inductive Synthesis Modulo Theories,” in
Proceedings of Computer Aided Verification - 30th International Conference,
CAV, vol. 10981, pp. 270–288, 2018.

[109] P. M. Phothilimthana, A. Thakur, R. Bodík, and D. Dhurjati, “Scaling
up Superoptimization,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, pp. 297–310, 2016.

[110] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding Information in Program
Binaries,” in Information and Communications Security, 6th International
Conference, ICICS, vol. 3269, pp. 187–199, 2004.

[111] V. Singhal, A. A. Pillai, C. Saumya, M. Kulkarni, and A. Machiry,
“Cornucopia : A Framework for Feedback Guided Generation of Binaries,”
in 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 27:1–
27:13, ACM, 2022.

[112] B. Cox and D. Evans, “N-Variant Systems: A Secretless Framework for
Security through Diversity,” in Proceedings of the 15th USENIX, 2006.

[113] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified Process replicæ
for Defeating Memory Error Exploits,” in Proceedings of the 26th IEEE
International Performance Computing and Communications Conference,
IPCCC 2007, April 11-13, 2007, New Orleans, Louisiana, USA, pp. 434–
441, IEEE Computer Society, 2007.

[114] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz,
“Stopping Buffer Overflow Attacks at Run-Time: Simultaneous Multi-variant
Program Execution on a Multicore Processor,” tech. rep., Technical Report
07-13, School of Information and Computer Sciences, UCIrvine, 2007.

[115] L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code Randomization Resilient to (Just-In-Time) Return-oriented
Programming,” in 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015,
The Internet Society, 2015.

[116] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET Approach:
Securing Cryptographic Embedded Software Against Side Channel Attacks,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 34, no. 8,
pp. 1320–1333, 2015.

[117] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated Software
Diversity,” in Moving Target Defense - Creating Asymmetric Uncertainty for
Cyber Threats, vol. 54, pp. 77–98, 2011.

[118] A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy, and M. Tunstall,
“Can Code Polymorphism Limit Information Leakage?,” in Proceedings of
Information Security Theory and Practice. Security and Privacy of Mobile
Devices in Wireless Communication - 5th IFIP WG 11.2 International
Workshop, WISTP, vol. 6633, pp. 1–21, 2011.

[119] A. Voulimeneas, D. Song, P. Larsen, M. Franz, and S. Volckaert, “dMVX:
Secure and Efficient Multi-variant Execution in a Distributed Setting,”
in EuroSec ’21: Proceedings of the 14th European Workshop on Systems
Security, Virtual Event / Edinburgh, Scotland, UK, April 26, 2021, pp. 41–47,
ACM, 2021.

[120] B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. De Bosschere,
“Instruction Set Limitation in Support of Software Diversity,” pp. 152–165,
2009.

[121] R. Tsoupidi, R. C. Lozano, and B. Baudry, “Constraint-based Diversification
of JOP Gadgets,” J. Artif. Intell. Res., vol. 72, pp. 1471–1505, 2021.

[122] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and Accurate Source Code Differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14,
pp. 313–324, 2014.

[123] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the Resilience
of Obfuscated Code Against Symbolic Execution Attacks via Machine
Learning,” in 26th USENIX Security Symposium (USENIX Security 17),
pp. 661–678, Aug. 2017.

[124] H. Bostani and V. Moonsamy, “EvadeDroid: A Practical Evasion Attack
on Machine Learning for Black-box Android Malware Detection,” CoRR,
vol. abs/2110.03301, 2021.

[125] D. D. Yao, X. Shu, L. Cheng, and S. J. Stolfo, Anomaly Detection as a Service:
Challenges, Advances, and Opportunities. Synthesis Lectures on Information
Security, Privacy, and Trust, Morgan & Claypool Publishers, 2017.

[126] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using
Sequences of System Calls,” J. Comput. Secur., vol. 6, no. 3, pp. 151–180,
1998.

[127] Y. Fang, C. Huang, L. Liu, and M. Xue, “Research on Malicious JavaScript
Detection Technology Based on LSTM,” IEEE Access, vol. 6, pp. 59118–
59125, 2018.

[128] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “, : SFI safety for native-compiled
Wasm,” Network and Distributed Systems Security (NDSS) Symposium, 2021.

[129] F. Cohen, “Computer Viruses,” in Proceedings of the 7th DoD/NBS Computer
Security Conference 1984, pp. 240–263, 1986.

[130] R. L. Castro, C. Schmitt, and G. D. Rodosek, “ARMED: How Automatic
Malware Modifications Can Evade Static Detection?,” in 2019 5th
International Conference on Information Management (ICIM), pp. 20–27,
2019.

[131] R. L. Castro, C. Schmitt, and G. Dreo, “AIMED: Evolving Malware
with Genetic Programming to Evade Detection,” in 18th IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications / 13th IEEE International Conference On Big Data Science
And Engineering, TrustCom/BigDataSE 2019, Rotorua, New Zealand,
August 5-8, 2019, pp. 240–247, IEEE, 2019.

[132] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster, “WebRanz:
Web Page Randomization for Better Advertisement Delivery and Web-Bot
Prevention,” FSE 2016, p. 205–216, 2016.

[133] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani, D. Balzarotti,
G. Vigna, and C. Kruegel, “When Malware is Packin’ Heat; Limits of
Machine Learning Classifiers Based on Static Analysis Features,” in 27th
Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26, 2020, The Internet Society,
2020.

[134] M. W. J. Chua and V. Balachandran, “Effectiveness of Android Obfuscation
on Evading Anti-malware,” in Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy, CODASPY, pp. 143–145, 2018.

[135] P. Dasgupta and Z. Osman, “A Comparison of State-of-the-art Techniques
for Generating Adversarial Malware Binaries,” CoRR, vol. abs/2111.11487,
2021.

[136] G. Lu and S. K. Debray, “Weaknesses in Defenses against Web-borne
Malware,” in Proceedings of Detection of Intrusions and Malware, and
Vulnerability Assessment - 10th International Conference, DIMVA 2013,
vol. 7967, pp. 139–149, Springer, 2013.

[137] M. Payer, “Embracing the New Threat: Towards Automatically Self-
diversifying Malware,” in Proceedings of The Symposium on Security for Asia
Network, pp. 1–5, 2014.

[138] N. Loose, F. Mächtle, C. Pott, V. Bezsmertnyi, and T. Eisenbarth, “Madvex:
Instrumentation-based Adversarial Attacks on Machine Learning Malware
Detection,” in Detection of Intrusions and Malware, and Vulnerability
Assessment - 20th International Conference, DIMVA 2023, vol. 13959 of
Lecture Notes in Computer Science, pp. 69–88, 2023.

[139] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, ch. 1, pp. 28–31. 1986.

[140] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja,
and J. Regehr, “Souper: A Synthesizing Superoptimizer,” CoRR,
vol. abs/1711.04422, 2017.

[141] B. G. Ryder, “Constructing the Call Graph of a Program,” IEEE Transactions
on Software Engineering, no. 3, pp. 216–226, 1979.

[142] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. M. Tullsen, and
D. Stefan, “Swivel: Hardening WebAssembly against Spectre,” in 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
pp. 1433–1450, 2021.

[143] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,
“Egg: Fast and Extensible Equality Saturation,” Proc. ACM Program. Lang.,
vol. 5, no. POPL, pp. 1–29, 2021.

[144] “Stop a wasm compiler bug before it becomes a problem | fastly.” https:
//www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compile
r-bug-before-it-became-a-problem, 2021.

[145] D. Cao, R. Kunkel, C. Nandi, M. Willsey, Z. Tatlock, and N. Polikarpova,
“babble: Learning Better Abstractions with E-Graphs and Anti-unification,”
Proc. ACM Program. Lang., vol. 7, no. POPL, pp. 396–424, 2023.

[146] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality Saturation: A New
Approach to Optimization,” in Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL,
pp. 264–276, 2009.

[147] T. D. Morgan and J. W. Morgan, “Web Timing Attacks Made Practical,”
Black Hat, 2015.

[148] T. Schnitzler, K. Kohls, E. Bitsikas, and C. Pöpper, “Hope of Delivery:
Extracting User Locations From Mobile Instant Messengers,” in 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023, The Internet Society,
2023.

[149] Mozilla, “Protections Against Fingerprinting and Cryptocurrency Mining
Available in Firefox Nightly and Beta ,” 2019.

[150] F. Cohen, “Computer Viruses: Theory and Experiments,” Comput. Secur.,
vol. 6, no. 1, pp. 22–35, 1987.

https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem

[151] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting
Speculative Execution,” meltdownattack.com, 2018.

[152] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-resolution Microarchitectural Attacks in
JavaScript,” in Financial Cryptography and Data Security - 21st International
Conference, FC, vol. 10322, pp. 247–267, 2017.

[153] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary Rewriting
Without Control Flow Recovery,” in Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI, pp. 151–163, 2020.

[154] A. Nicholson, Q. Stiévenart, A. Mazidi, and M. Ghafari, “Wasmizer:
Curating WebAssembly-driven Projects on GitHub,” in 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR),
pp. 130–141, 2023.

[155] T. Y. Zhuo, Z. Yang, Z. Sun, Y. Wang, L. Li, X. Du, Z. Xing, and D. Lo,
“Source Code Data Augmentation for Deep Learning: A Survey,” arXiv e-
prints, p. arXiv:2305.19915, May 2023.

[156] S. Srikant, S. Liu, T. Mitrovska, S. Chang, Q. Fan, G. Zhang, and
U. O’Reilly, “Generating Adversarial Computer Programs using Optimized
Obfuscations,” in 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[157] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “SelfAPR:
Self-supervised Program Repair with Test Execution Diagnostics,” in 37th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 92:1–92:13, ACM,
2022.

[158] W. Zhang, S. Guo, H. Zhang, Y. Sui, Y. Xue, and Y. Xu, “Challenging
Machine Learning-based Clone Detectors via Semantic-preserving Code
Transformations,” IEEE Trans. Software Eng., vol. 49, no. 5, pp. 3052–3070,
2023.

[159] H. Li, X. Zhou, L. A. Tuan, and C. Miao, “Rethinking Negative Pairs in Code
Search,” arXiv preprint arXiv:2310.08069, 2023.

[160] J. D. Seideman, Transformation and Abstraction to Aid Comparison of
Binary Executables Across Compilation Environments. PhD thesis, City
University of New York, 2023.

[161] H. Huang, A. M. Youssef, and M. Debbabi, “BinSequence: Fast, Accurate
and Scalable Binary Code Reuse Detection,” Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, 2017.

[162] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding Unpatched Code
Clones in Entire OS Distributions,” in 2012 IEEE Symposium on Security
and Privacy, pp. 48–62, 2012.

[163] H. Jang, K. Yang, G. Lee, Y. Na, J. D. Seideman, S. Luo, H. Lee, and
S. Dietrich, “QuickBCC: Quick and Scalable Binary Vulnerable Code Clone
Detection,” in ICT Systems Security and Privacy Protection, pp. 66–82, 2021.

Part II

Included papers

93

WEBASSEMBLY DIVERSIFICATION FOR
MALWARE EVASION

Javier Cabrera-Arteaga, Tim Toady, Martin Monperrus, Benoit Baudry
Computers & Security, Volume 131, 2023

https://www.sciencedirect.com/science/article/pii/S01674048230
02067

97

https://www.sciencedirect.com/science/article/pii/S0167404823002067
https://www.sciencedirect.com/science/article/pii/S0167404823002067

Computers & Security 131 (2023) 103296

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

WebAssembly diversification for malware evasion

Javier Cabrera-Arteaga

∗, Martin Monperrus, Tim Toady, Benoit Baudry

KTH Royal Institute of Technology, Stockholm, Sweden

a r t i c l e i n f o

Article history:

Received 21 December 2022

Revised 27 April 2023

Accepted 13 May 2023

Available online 18 May 2023

Keywords:

WebAssembly

Cryptojacking

Software diversification

Malware evasion

a b s t r a c t

WebAssembly has become a crucial part of the modern web, offering a faster alternative to JavaScript in

browsers. While boosting rich applications in browser, this technology is also very efficient to develop

cryptojacking malware. This has triggered the development of several methods to detect cryptojacking

malware. However, these defenses have not considered the possibility of attackers using evasion tech-

niques. This paper explores how automatic binary diversification can support the evasion of WebAssem-

bly cryptojacking detectors. We experiment with a dataset of 33 WebAssembly cryptojacking binaries

and evaluate our evasion technique against two malware detectors: VirusTotal, a general-purpose detec-

tor, and MINOS, a WebAssembly-specific detector. Our results demonstrate that our technique can auto-

matically generate variants of WebAssembly cryptojacking that evade the detectors in 90% of cases for

VirusTotal and 100% for MINOS. Our results emphasize the importance of meta-antiviruses and diverse

detection techniques and provide new insights into which WebAssembly code transformations are best

suited for malware evasion. We also show that the variants introduce limited performance overhead,

making binary diversification an effective technique for evasion.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

WebAssembly is a binary format that has become an essential

component of the web. It first appeared in 2017 as a fast and safe

complement for JavaScript (Haas et al., 2017). The language pro-

vides low-level constructs enabling efficient execution, much closer

to native code than JavaScript. Since its inception, the adoption

of WebAssembly has grown exponentially, even outside the web

(Cabrera Arteaga et al., 2022). Its early adoption by malicious ac-

tors is further evidence of WebAssembly’s success.

The primary black-hat usage of WebAssembly is cryptojacking

(Rokicki et al., 2022). Such WebAssembly code mines cryptocur-

rencies on users’ browsers for the benefit of malicious actors and

without the consent of the users (Musch et al., 2019b). The main

reason for this phenomenon is that the core foundation of cryp-

tojacking is: the faster, the better. In this context, WebAssembly,

a binary instruction format designed to be portable and fast, is a

feasible technology for implementing and distributing cryptojack-

ing over the web. A Kaspersky report about the state of cryptojack-

ing in the first three quarters of 2022 confirms the steady growth

in the usage of cryptominers (Kaspersky, 2022). The report shows

∗ Corresponding author.

E-mail addresses: javierca@kth.se (J. Cabrera-Arteaga), monperrus@kth.se

(M. Monperrus), toady@eecs.kth.se (T. Toady), baudry@kth.se (B. Baudry) .

that Monero (2022) is the most used cryptocurrency for crypto-

mining in the browser. Attackers might hide WebAssembly cryp-

tominers (Tekiner et al., 2021) in multiple locations inside web ap-

plications.

Antivirus and browsers provide support for detecting crypto-

jacking. For example, the Firefox browser supports the detection

of cryptomining by using deny lists (Mozilla, 2019). The academic

community also provides related work on detecting or preventing

WebAssembly cryptojacking (Bian et al., 2020; Kelton et al., 2020;

Kharraz et al., 2019; Naseem et al., 2021; Romano et al., 2020;

Wang et al., 2018). Yet, it is known that black-hats can use eva-

sion techniques to bypass detection. Only the previous work of

Bhansali et al. (2022) investigates the possibility of WebAssembly

cryptojacking to evade detection techniques. This is a crucial mo-

tivation for our work, one of the first to study WebAssembly mal-

ware evasion.

Our work is different from Bhansali et al. (2022) ’s in the fol-

lowing aspects. First, we extend the evaluation of MINOS by us-

ing VirusTotal and, we empirically demonstrate that this latter is

a valid cryptojacking malware meta-detector for WebAssembly to

be used as baseline (see Section 5). Second, we conduct an evalua-

tion of the correctness and efficiency of the Wasm variants, which

provides insights into the trade-offs and limitations of bytecode-

level transformations for malware evasion in WebAssembly. Our

approach, performs bytecode transformations at the WebAssem-

bly level, instead of source code based transformations like the

https://doi.org/10.1016/j.cose.2023.103296

0167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Bhansali’s technique. We focus on software diversification tech-

niques in the spirit of Cohen (1993) , as this technique has the abil-

ity to generate many variants, while the impact on the binary size

and performance can be controlled through the selection of spe-

cific diversification transformations (Lundquist et al., 2016).

In this paper, we design, implement and evaluate a full-fledged

evasion pipeline for WebAssembly. Concretely, we use wasm-

mutate as a diversifier (Bytecodealliance, 2021), which implements

135 possible bytecode transformations, grouped into three cate-

gories: peephole operator, module structure, and control flow. We

demonstrate the effectiveness of our evasion technique against

two cryptojacking detectors: VirusTotal, a general detection tool

that comprises 60 antiviruses and, MINOS (Naseem et al., 2021),

a WebAssembly-specific detector.

We evaluate our proposed evasion technique on 33 cryptojack-

ing malware that we curated from the 8643 binaries of the wasm-

bench dataset (Hilbig et al., 2021), to our knowledge, the most ex-

haustive collection of real-world WebAssembly binaries. We exper-

iment with the 33 binaries marked as potentially dangerous by at

least one antivirus vendor of VirusTotal. We empirically demon-

strate that evasion is possible for all of these 33 real-world We-

bAssembly cryptojacking malware while using a WebAssembly-

specific detector. Remarkably, we find 30 cryptominers for which

our technique successfully generates variants that evade VirusTo-

tal. Our set of malware includes 6 cryptojacking programs that

are fully reproducible in a controlled environment. With them, we

assess that our evasion method does not affect malware correct-

ness and generates fully functional malware variants with minimal

overhead.

Our work provides evidence that the malware detection com-

munity has opportunities to strengthen the automatic detection of

cryptojacking WebAssembly malware. The results of this work are

actionable, as we provide quantitative evidence on specific mal-

ware transformations on which detection methods can focus. To

sum up, the contributions of this work are:

• A full-fledged cryptojacking malware evasion pipeline for We-

bAssembly, based on a state-of-the-art binary diversification.

We provide the repository of the tool at https://github.com/

ASSERT-KTH/wasm _ evasion .

• A systematic evaluation of our cryptojacking evasion pipeline,

including effectiveness, performance, and correctness.

• Actionable evidence on which transformations are better for

evading WebAssembly cryptojacking detectors, calling for future

work from the academic and the industrial community alike.

• A reproducible comparison of VirusTotal with MINOS, a

WebAssembly-specific detector, showing the relevance of Virus-

Total as a valid and practical cryptojacking meta-detector.

This paper is structured as follows. In Section 2 , we introduce

WebAssembly for cryptomining and the state-of-the-art on mal-

ware detection and evasion techniques and its limitations for We-

bAssembly cryptojacking. In Section 3 , we instantiate and explain

malware evasion for WebAssembly cryptojacking in a real scenario.

We follow with the technical description of our malware evasion

algorithms in Section 4 . We formulate our research questions in

Section 5 , answering them in Section 6 . We discuss our research

in Section 7 , in order to help future research projects on similar

topics. We finalize with our conclusions Section 8 .

2. Background & related work

In this section, we introduce WebAssembly. Besides, we illus-

trate its usage for cryptojacking. Then, we discuss how WebAssem-

bly cryptojacking can be detected, and the most common tech-

niques used to evade such detection.

2.1. WebAssembly

WebAssembly (Wasm) is a binary instruction set meant initially

for the web. It was adopted as a standard language for the web by

the W3C in 2017, building upon the work of Haas et al. (2017) .

One of Wasm’s primary advantages is that it defines its own In-

struction Set Architecture (ISA), which is both straightforward and

platform-independent. As a result, a Wasm binary can execute on

virtually any platform, including web browsers and server-side en-

vironments. Since its introduction, all major web browsers have

implemented support for WebAssembly, reporting to be only 10%

slower than machine code during runtime.

WebAssembly programs are compiled ahead-of-time from

source languages such as C/C++, Rust, and Go, utilizing compilation

pipelines like LLVM. This allows Wasm to benefit from ahead-of-

time compiling optimizations, improving its performance. A Wasm

binary is comprised of sections, which are consecutive sequences

of bytes in the binary file. In contrast to the absolute order of sec-

tions in Windows Portable Programs, sections in Wasm binaries

have a relative order between them. Thus, Wasm can be consid-

ered a more flexible binary format.

WebAssembly programs operate on a virtual stack that allows

for only four data types: i32, i64, f32, and f64. These same data

types are used to annotate the numeric operations in the We-

bAssembly code. Additionally, a WebAssembly program might in-

clude several custom sections. For example, binary producers such

as compilers use it to store metadata. A WebAssembly code also

declares memories and globals, which are used to store, manipu-

late and share data during program execution, e.g. to share data

with the host engine of the WebAssembly binary.

WebAssembly is designed with isolation as a primary consider-

ation. For instance, a WebAssembly binary cannot access the mem-

ory of other binaries or interact directly with a browser’s built-in

API, such as the DOM or the network. Instead, communication with

these features is constrained to functions imported from the host

engine, ensuring a secure and safe Wasm environment. Moreover,

control flow in WebAssembly is managed through explicit labels

and well-defined blocks, which means that jumps in the program

can only occur inside blocks, unlike regular assembly code.

In Listing 1 , we provide an example of a C program that con-

tains a function declaration, a loop, a loop conditional, and a mem-

ory access. When the C code is compiled to WebAssembly, it pro-

duces the code shown in Listing 2 . The stack operations are folded

with parentheses. The module in the example contains the compo-

nents described previously.

2.2. Malware in WebAssembly

The use cases of WebAssembly in browsers focuses on

computation-intensive activities such as gaming or image process-

ing. Also, malign actors have taken advantage of WebAssembly to

carry out their activities, and cryptojacking is the most common

usage observed so far (Musch et al., 2019a; 2019b). The reason for

this is that cryptojacking involves executing vast amounts of hash

Listing 1. C program containing function declaration, loops, conditionals and mem-

ory access.

2

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Listing 2. WebAssembly code for C code in Listing 1 .

functions, which requires significant computing resources. In com-

parison to JavaScript, WebAssembly is significantly faster at han-

dling these intense hashing operations in the browser (Haas et al.,

2017).

Web cryptojacking is often carried out by including a malicious

JavaScript+WebAssembly payload, which then execute on the vic-

tim’s browser without their knowledge (Tekiner et al., 2021). For

example, websites that offer illegal download or adult sites, of-

ten include cryptojacking in their webpages to generate passive in-

come. Since cryptojacking is difficult to detect and remove, it can

remain on a victim’s computer for an extended period, continuing

to consume resources and to generate income for the attacker. This

lucrative form of malware does need vulnerabilities or stealing cre-

dentials.

2.3. Malware detection

Malware detection determines if a binary is malicious or not.

This process can be based on static, dynamic, or hybrid analysis

(Aslan and Samet, 2020). In this section, we highlight works in

the area of malware detection. Static-based approaches analyze

the source code or the binary to find malign patterns without

executing them. The literature reports a range of techniques,

from simple checksum checking to advanced machine learning

methods, that have subsequently been adopted by commercial

antiviruses (Botacin et al., 2022; Li et al., 2021). In the context of

WebAssembly, MineSweeper is a detection method based on static

analysis (Konoth et al., 2018) of WebAssembly. Its detection strat-

egy depends on the knowledge of the internals of CryptoNight,

one popular library for cryptomining. In the same context, MINOS

is a state-of-art static detection tool that converts WebAssembly

binaries to vectors for malware detection (Naseem et al., 2021).

MINOS is a practical approach for detecting malicious We-

bAssembly binaries. It works by converting the Wasm binary’s

bytestream into a 100 × 100 grayscale image, which is then fed

into a Convolutional Neural Network (CNN). The CNN has learned

patterns in the image to classify it as either benign or malicious.

This approach is similar to image-based methods used in other

areas (Liu and Wang, 2016), e.g., for detecting Windows malware

(Kalash et al., 2018; Lachtar et al., 2023). We believe MINOS is the

optimal static approach to detect WebAssembly malware due to its

simplicity and practicality, such as being easily implemented as a

browser extension.

Dynamic analysis for malware detection is based on the execu-

tion of the malware code to identify potentially dangerous behav-

iors (Egele et al., 2008). Usually, this is done by monitoring some

functions, such as API calls. For example, BLADE (Lu et al., 2010) is

a Windows kernel extension that aims to eliminate drive-by mal-

ware installations. It wraps the filesystem for browser downloads

for which user consent has been involved. It thwarts the ability of

browser-based exploits to download and execute malicious content

surreptitiously. SEISMIC and MineThrotle also perform dynamic

analyses (Bian et al., 2020; Wang et al., 2018) on WebAssembly

binaries to profile instructions that are specific to cryptominers.

For example, cryptominers overly execute XOR instructions. SEIS-

MIC and MineThrotle use machine learning approaches to classify

the binary as benign or malign based on collecting runtime pro-

files. On the same topic, MinerRay (Romano et al., 2020) detects

cryptojacking in WebAssembly binaries by analyzing their control

flow graph at runtime, searching for structures that are character-

istic of encryption algorithms commonly used for cryptojacking.

CoinSpy is another malware detector based on dynamic analysis

(Kelton et al., 2020). It uses a convolutional neural network to anal-

yse the computation, network, and memory information caused by

cryptojackers running in client browsers.

Hybrid approaches use a mix of static and dynamic detection

techniques. The main reason to use hybrid approaches is the im-

practicability of executing the whole program. Thus, only pieces

of code that can be quickly executed are dynamically analyzed.

For example, AppAudit embodies a novel dynamic analysis for An-

droid applications that can simulate the execution of some parts

of the program (Xia et al., 2015). For WebAssembly, Outguard

(Kharraz et al., 2019) trains a Support Vector Machine model with

a combination of cryptomining function names obtained statically

and dynamic information such as the number of web workers used

in the web application that is analyzed.

It is possible to combine several independent detectors into

a meta-antivirus. Each detector embeds some heuristics that are

good at detecting specific types of malware (Moser et al., 2007).

Hence, their combination can effectively detect a broader range

of malware, e.g., using relationship analysis. VirusTotal (GoogleLLC,

2022; VirusTotal, 2020) is a consolidated meta-antivirus. VirusTo-

tal operates with 60 antivirus vendors to provide malware scan-

ning. Through its API, a program can be labeled by 60 antiviruses.

This aggregation is used to determine if an asset under analysis

is malicious, e.g., by voting. Previous works used VirusTotal to as-

sess detection efficiency, Peng et al. (2019) because it is a proxy to

evaluate state-of-art techniques in combination with commercial

antiviruses. In this work, we follow the same methodology, using

VirusTotal to assess our technique’s ability to evade cryptojacking

detectors.

While concerns have been raised about the use of VirusTotal for

some malware and file type families (Botacin et al., 2020), it can be

considered for WebAssembly cryptojacking detection. We empiri-

3

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

cally highlight later in this paper that VirusTotal is slightly better

than the WebAssembly-specific detector MINOS regarding the de-

tection of cryptojacking malware.

2.4. Malware evasion

Malware evasion techniques aim at avoiding malware detec-

tion (Afianian et al., 2019) Potential attackers use a wide range

of techniques to achieve evasion, such as genetic programming

(Castro et al., 2019). With time, the techniques to avoid detec-

tion have grown in complexity and sophistication (Aghakhani et al.,

2020). For example, Chua and Balachandran (2018) proposed a

framework to automatically obfuscate Android applications’ source

code using method overloading, opaque predicates, try-catch, and

switch statement obfuscation, creating several versions of the same

malware. Also, machine learning approaches have been used to

create evading malware (Dasgupta and Osman, 2021), based on

a corpus of pre-existing malware (Bostani and Moonsamy, 2021).

While most approaches try to break static malware detectors, more

sophisticated techniques avoid dynamic detection, usually involv-

ing throttling techniques or dynamic anti-analysis checks (Lu and

Debray, 2013; Payer, 2014). Wang proposes the concept of Accrued

Malicious Magnitude (AMM) to identify which malware features

should be manipulated to maximize the likelihood of evading de-

tection (Wang et al., 2021).

In the context of WebAssembly, malware evasion is nearly un-

explored. Only Romano et al. (2022) recently proposed wobfusca-

tor, a code obfuscation technique that transforms JavaScript code

into a new JavaScript file and a set of WebAssembly binaries.

Their technique mostly focuses on JavaScript evasion and not We-

bAssembly evasion.

Bhansali et al. (2022) propose a technique where WebAssembly

binaries are transformed while maintaining the functionality with

seven different source code obfuscation techniques. They evaluate

the effectiveness of the techniques against MINOS (Naseem et al.,

2021). They show these transformations can generate malware

variants that evade the MINOS classifier.

3. WebAssembly cryptojacking malware evasion in practice

Figure 1 illustrates our attack scenario: a practical We-

bAssembly cryptojacking attack consists of three components: a

WebAssembly binary, a JavaScript wrapper, and a backend cryp-

tominer pool. The WebAssembly binary is responsible for executing

the hash calculations, which consume significant computational

Fig. 1. WebAssembly evasion in practice. The user visits a webpage containing

cryptojacking malware that uses network resources to operate. A malware detector

blocks identified malicious WebAssembly binaries. The attacker, using a malware

oracle, creates a WebAssembly cryptojacking malware variant that evades detec-

tion. Finally, the attacker delivers the modified binary, initiating the cryptojacking

process and compromising the browser.

resources. The JavaScript wrapper facilitates the communication

between the WebAssembly binary and the cryptominer pool.

Overall, a successful cryptojacking attack on a victim’s browser

consists in the following sequence of steps. First, the victim

visits a web page infected with the cryptojacking code. The web

page establishes a channel to the cryptominer pool, which then

assigns a hashing job to the infected browser. The WebAssembly

cryptominer calculates thousands of hashes inside the browser, in

parallel using multiple browser workers (Mozilla, 2022). Once the

malware server receives acceptable hashes, it is rewarded with

cryptocurrencies for the mining. Then, the server assigns a new

job, and the mining process starts over.

Some detection techniques discussed in Section 2.3 can be de-

ployed in the browser directly to prevent cryptojacking. The pri-

mary objective of our work is to demonstrate the possibility of

using code diversification to bypass cryptojacking defenses. Con-

cretely, the following workflow can happen to successfully evade

placed defenses: i) The user visits a webpage that contains a

cryptojacking malware, which utilizes network resources to exe-

cute, (1) and (2) in Fig. 1 . Cryptojacking malware can be injected

through malicious browser extensions, malvertising, compromised

websites, or deceptive links (Tekiner et al., 2021). ii) A malware

detector blocks WebAssembly binaries that are identified as ma-

licious (3). The malware detector system can be implemented lo-

cally or remotely. For instance, a proxy can intercept and send net-

work resources to an external detector through the detector’s API.

iii) The attacker, based on a malware oracle, crafts a WebAssembly

cryptojacking malware variant that evade the detection (4). iv) The

attacker delivers the modified binary instead of the original one

(5), which initiates the cryptojacking process and compromises the

browser (6).

The idea is that attackers rapidly diversify their WebAssembly

code to stay ahead of the defense system and maintain success-

ful cryptojacking operations. Crucially, attackers must ensure that

the diversified binaries they use for cryptojacking meet specific

performance requirements, which is an aspect we will study in

Section 4 .

4. Diversification for malware evasion in WebAssembly

In this section, we explain a technique for potential attackers to

craft a WebAssembly binary that evades detection (steps 4, 5 and

6 in Fig. 1).

In Fig. 2 we illustrate our generic architecture for the malware

evasion component. The workflow starts by passing a WebAssem-

bly malware binary to a software diversifier (1). The diversifier

generates binary variants, which are passed to a malware oracle

(2). The oracle returns labeling feedback for the binary variant:

malware or benignware. The oracle result is the input for a fitness

function that steers the construction of a new binary on top of the

previously diversified one. This process is repeated until the mal-

ware oracle marks the mutated binary as benign or a timeout is

reached (4). For the sake of open science and for fostering research

on this important topic, our implementation is made publicly avail-

able on GitHub: https://github.com/ASSERT-KTH/wasm _ evasion .

4.1. Diversifier

Conceptually, our approach is parametrized by a semantic pre-

serving diversifier (Cohen, 1993). For our prototype implementa-

tion, we select one diversifier that supports wasm-to-wasm diver-

sification and performs almost non-costly transformations: wasm-

mutate (Bytecodealliance, 2021). This tool takes a WebAssembly

module as input and returns a set of variants of that module.

wasm-mutate follows the notion of program equivalence modulo

input (Le et al., 2014), i.e., the variants should provide the same

4

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Fig. 2. Our original workflow of binary diversification for malware evasion in WebAssembly. The workflow begins with a WebAssembly malware binary sent to a software

diversifier. The diversifier creates binary variants, which are analyzed by a malware oracle that labels them as malware or benignware. The oracle’s results guide the

development of a new binary based on the previous one. This process continues until the malware oracle labels the mutated binary as benign or a timeout occurs.

output for the same program inputs. It represents the search space

for new variants as an e-graph (Willsey et al., 2020), and it ex-

ploits the property that any traversal through the e-graph rep-

resents a semantically equivalent variant of the input program.

wasm-mutate can generate thousands of semantically equivalent

variants from a single binary in a few minutes.

Wasm-mutate defines 135 possible transformations on an in-

put WebAssembly binary, grouped into three categories. The peep-

hole operator is the first category. It is responsible for rewriting

instruction sequences in function bodies. It selects a random in-

struction within the binary functions and applies one or more

of the 125 rewrite rules. Finally, it re-encodes the WebAssembly

module with the new, rewritten expression to produce a binary

variant. The second category of transformations in wasm-mutate

implements module structure transformations. It operates at the

level of the WebAssembly binary structure. It includes the follow-

ing eight transformations: add a new type definition, add/modify

custom sections, add a new function, add a new export, add a new

import, add a new global, remove a type and remove a function.

The third transformation category is on the control flow graph of

a function code level. wasm-mutate performs two possible trans-

formations: unroll a loop or swap the branches of a conditional

block.

The decision of using wasm-mutate as a diversifier is based

on three key factors. First, while diversification approaches for

WebAssembly from LLVM sources exist (Cabrera Arteaga et al.,

2022; Cabrera-Arteaga et al., 2021), compiler-based diversification

may include compiler fingerprints in the built binaries, which is

bad for stealthy evasion. Second, while optimization-based ap-

proaches could be used to diversify WebAssembly binaries from

source code (Ren et al., 2021), optimizations are usually all ap-

plied at once, providing a smaller diversification space, hence

fewer opportunities for evasion. Finally, wasm-mutate is a tool

that implements many useful semantically equivalent transforma-

tions, making it well-suited as a diversifier with minimal engi-

neering effort. Theref ore, using wasm-mut ate as a diversifier pro-

vides a practical approach for evasion in WebAssembly. We be-

lieve that attackers would take the same path and reach the same

conclusion.

For the sake of illustration, in Listing 3 , we present a variant

of the WebAssembly code shown in Listing 2 . We generate this

variant using the wasm-mutate diversifier, with two transforma-

tions. The changes made to the original code are highlighted in

orange and green. The first transformation, highlighted in orange,

involves removing the custom section that indicates the producer

of the original binary. The second transformation, highlighted in

green, replaces the shift-left operation in the original binary with

two consecutive multiplications of the same value.

Listing 3. Wasm-mutate transformation applied over Listing 2 .

4.2. Malware oracle

To determine whether a given sample is malicious or not, we

rely on a malware oracle. The simplest form of malware oracle is a

binary classifier that outputs a label of {malware, benignware}. In

addition to binary classifiers, we also consider numerical oracles

5

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

that provide a value representing the likelihood that a sample is

malicious.

In our experiments, we use VirusTotal (2020) as our malware

oracle. VirusTotal operates with 60 antivirus vendors to provide

malware scanning. Users submit binaries, and they receive labels

from different vendors. The resulting 60 labels can then be used to

determine if a queried asset is malicious, e.g., by voting. VirusTotal

can be used as both a binary and a numerical oracle (Zhu et al.,

2020). We use VirusTotal as a binary oracle by returning malware

if at least one vendor classifies the binary as malware. We also use

VirusTotal as a numerical oracle, using the number (between 0 and

60) of oracles labeling a binary as malware.

Research (Botacin et al., 2020), classification labels assigned to

samples by vendors in VirusTotal can change over time due to new

antivirus releases. In our work, we operate under the assumptions

outlined in Section 3 and consider a scenario where an attacker

develops and executes an evasion technique in under an hour. This

timeframe is significantly shorter than the time it takes for classifi-

cation labels to change in VirusTotal, which typically takes several

days.

4.3. Transformation selection & fitness function

The third step of our workflow consists of two actions towards

synthesizing a malware variant: select a wasm-mutate transforma-

tion to apply; and determine if the transformation is applied. This

latter decision depends on: 1) the result of the malware oracle at

the previous iteration and 2) an estimation of the ability of the

new transformation to generate an evading binary. For this estima-

tion, we implement two variations of our evasion algorithm.

First, we use a binary malware oracle. In this context, we al-

ways apply the transformation. This is the baseline evasion algo-

rithm , which is discussed in more detail later.

The second variation of the evasion algorithm includes a fitness

function that uses a numerical oracle to estimate if the transfor-

mation should be applied. The fitness function uses the informa-

tion from VirusTotal and is the total number of vendors (between

0 and 60) that label a binary as malware:

F F (m) = �i =60
i =0

{
1 if v i (m) returns malware
0 i.o.c

This fitness function is used in our second proposed algorithm and

is discussed in details below.

4.3.1. Baseline evasion

The baseline evasion algorithm is described in Algorithm 1 . It

uses VirusTotal as a binary oracle (true if at least one VirusTotal

detects malware, false otherwise). In this algorithm, step 1 is in

line 3, steps 2 and 4 are in lines 4 to 6, and step 3 is in line 7.

Each iteration of this algorithm, “stacks” a transformation on top

of the previous ones (line 7) until the binary is marked as benign

(line 5) or the maximum number of iterations is reached (line 2).

With this algorithm, a transformation is randomly selected at

each iteration, and always applied. Hence, the baseline algorithm

Algorithm 1: Baseline evasion algorithm.

input : binary W , diversifier D , Malware Oracle MO

output : Benign binary M

′
M ← W while Not max iterations do

M

′ ← D (M) if M O (M

′) == ′′ benign ′′ then

return M

′ ;
else

M ← M

′ ;

return

′′ Not evaded

′′ ;

Algorithm 2: MCMC evasion algorithm.

input : binary W , diversifier D , fitness function F F

output : Benign binary M

′
M ← W previous_fitness = F F (W) while Not max iterations do

M

′ ← D (M) current_fitness = F F (M

′) if current_fitness == 0

then

// Zero means that none vendor marks// the binary as

malware return M

′ ;
else

p ← random () if

p < min

(
1 , exp

(
σ

pre v ious _ f itness

current _ f itness

))
then

M ← M

′ ;previous_fitness = current_fitness;

return

′′ Not evaded

′′ ;

can require many iterations and oracle queries to turn the origi-

nal malware into a misclassified binary. Second, some transforma-

tions might suppress the effect of previous ones. Third, the base-

line algorithm considers each vendor equally good at detecting a

malware, which is naive as the vendors display considerable diver-

sity regarding detection strength. An algorithm that would target

evasion on the strongest vendor first would increase the overall

performance of the evasion process. Finally, we might generate a

binary that entirely evades the oracle but is unpractical in terms

of size or its execution performance.

4.3.2. MCMC evasion

To overcome the limitations of the baseline algorithm, we de-

vise the MCMC evasion algorithm , which we now discuss. It is a

Markov Chain Monte Carlo (MCMC) sampling (Hastings, 1970) of

the transformations to apply (Schkufza et al., 2012). MCMC is used

to sample from the space of transformation sequences to maximize

the likelihood of oracle evasion in two ways.

The algorithm for the MCMC evasion is given in Algorithm 2 .

The halting condition is met when a mutated binary is marked as

benign, or a maximum number of iterations is reached. The algo-

rithm implements the MCMC in lines 6 to 15. The Markov deci-

sion function in line 12 is used to determine whether it is worth

applying the transformation at this step or whether it should be

skipped. This decision function is based on the current transfor-

mation’s fitness and the fitness value saved at the previous step

(line 14). The core idea is to favor a binary variant that evades the

largest number of vendors (lines 4 and 13). Therefore, the number

of oracle calls should decrease as the algorithm searches for trans-

formations that converge toward total evasion. On the other hand,

if a new transformation step decreases the fitness value, it is likely

to be ignored. The classical MCMC acceptance criteria in line 12 is

meant to prevent the algorithm from being stuck in local minima.

In line 12, the fraction calculated in the exponentiation is con-

trolled by the σ parameter. By setting a low σ parameter, we can

turn the MCMC evasion algorithm into a greedy algorithm. In this

case, the algorithm selects a new transformation only if the fit-

ness value is higher than in the previous iteration. On the contrary,

if the σ parameter is significant, the algorithm searches for local

maxima. In our experiments (Section 5), we explain how we select

the values of σ .

The MCMC evasion algorithm addresses the three limitations

of the baseline mentioned in the previous section. First, the fit-

ness function selects transformations, thus reducing the total num-

ber of transformations that are actually performed. Second, MCMC

aims at increasing fitness, which reduces the risk of suppressing a

valuable transformation performed in the previous step. Third, by

6

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

favoring solutions that maximize the number of evaded vendors,

MCMC biases the search towards evading the strongest vendors.

5. Experimental methodology

In this section, we enunciate the research questions around

which we assess the ability of our technique to evade malware de-

tectors. We also describe our dataset of malware, as well as the

metrics we define to answer our research questions.

5.1. Research questions

• RQ1. To what extent can cryptojacking malware detection be

bypassed by WebAssembly diversification? With this research

question, we evaluate the feasibility of binary transformations

on malware and how they affect the detection of cryptojacking.

• RQ2. To what extent can the attacker minimize the number

of calls to the cryptojacking detection oracle? In real-world

scenarios, the number of calls to the oracle is limited. With this

question, we analyze the ability of our technique at limiting the

number of oracles calls made during the evasion process.

• RQ3. To what extent do the evasion techniques impact

cryptojacking malware functionality? The evasion algorithms

might generate variants that evade the detectors but modify

their core malicious functionality. This research question eval-

uates the correctness of the created variants, as well as their

efficiency.

• RQ4. What are the most effective transformations for We-

bAssembly cryptojacking malware evasion? This research

question provides empirical evidence on which types of trans-

formations are better for WebAssembly cryptojacking evasion.

• RQ5. To what extent can Wasm diversification evade crypto-

jacking detection with MINOS? In this research question, we

evaluate the feasibility of our technique for evading a state-of-

the-art detector, MINOS, which is tailored to the analysis of We-

bAssembly.

5.2. Dataset selection

To answer our research questions, we curate a dataset of We-

bAssembly malware. For this, we filter the wasmbench dataset

of Hilbig et al. (2021) to collect suspicious malware according to

VirusTotal. The wasmbench dataset contains 8643 binaries col-

lected from GitHub repositories and web pages in 2021. To our

knowledge, this dataset is the newest and most exhaustive col-

lection of real-world WebAssembly binaries. On August 2022, we

passed the 8643 binaries of wasmbench to VirusTotal (2020) , and

we 33 binaries were marked as potentially dangerous by at least

one antivirus vendor of VirusTotal. All malware were marked as

cryptojacking programs and we use these WebAssembly binaries

to answer our research questions for cryptojakcing malware eva-

sion.

In Table 1 we describe the 33 binaries detected as malware by

VirusTotal. The table contains the following properties as columns:

Table 1

The 33 real-world WebAssembly cryptojacking used in our experiments. The table contains: the 256 hash of the We-

bAssembly cryptojacking, its size in bytes, the number of instructions, the number of functions defined inside the binary

and the number of VirusTotal vendors that detect the binary at the time of writing. The last column contains the origin

of the binary.

Hash S #I. #F. #D Origin

9d30e7f0 68,796 30,768 61 30 http archive

8ebf4e44 68,803 30,768 61 26 Web crawling

47d29959 68,796 30,768 61 31 Yara a

aafff587 97,551 47,033 72 6 SEISMIC b

dc11d82d 67,496 30,246 49 20 MinerRay c

0d996462 70,972 30,531 30 19 SEISMIC, MinerRay

fbdd1efa 94,270 45,905 40 18 SEISMIC

a32a6f4b 94,461 45,940 40 18 SEISMIC

d2141ff2 70,111 31,783 30 9 MinerRay, SEISMIC

046dc081 74,099 31,783 29 6 MinerRay, SEISMIC

24aae13a 62,458 28,339 37 4 SEISMIC

000415b2 62,466 28,339 37 3 SEISMIC

643116ff 73,010 31,866 6 MinerRay

006b2fb6 87,502 39,544 90 4 DeepMiner d

15b86a25 100,755 45,881 79 4 MinerRay

4cbdbbb1 104,666 47,916 62 3 SEISMIC

119c53eb 137,320 67,069 79 2 SEISMIC

f0b24409 77,572 34,918 59 2 MinerRay

c1be4071 77,572 34,918 59 2 MinerRay

a74a7cb8 77,572 34,918 59 2 MinerRay

a27b45ef 77,572 34,918 59 2 MinerRay

6b8c7899 77,572 34,918 59 2 MinerRay

68ca7c0e 77,572 34,918 59 2 MinerRay

65debcbe 77,572 34,918 59 2 MinerRay

5bc53343 77,572 34,918 59 2 MinerRay

59955b4c 77,572 34,918 59 2 MinerRay

942be4f7 103,520 46,208 79 4 MinerRay

fb15929f 77,054 33,562 112 4 MinerRay

7c36f462 121,931 55,839 79 4 MinerRay

89a3645c 75,003 34,134 58 2 MinerRay

dceaf65b 77,575 34,901 58 2 MinerRay

089dd312 79,883 34,989 58 2 MinerRay

e09c32c5 71,955 32,416 46 1 MinerRay

a Yara project https://github.com/davbo/yara- rs/tree/master/sample- miners .
b All Wasm binaries of the MinerRay project could be found at https://github.com/miner-ray/miner-ray.github.io/tree/

master/Data/SampleWasmFiles .
c All Wasm binaries of the SEISMIC project could be found at https://github.com/wenhao1006/SEISMIC .
d Deepminer project https://github.com/deepwn/deepMiner .

7

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

the identifier of the WebAssembly binary which is the sha256 hash

of its bytestream, its size in bytes, the number of instructions, the

number of functions defined inside the binary and the number of

VirusTotal vendors that detect the binary. The last column contains

the origin of the binary according to the wasmbench dataset. 1

The programs include between 30 and 70 functions, for a total

number of instructions ranging from 30,531 to 55,839. The size of

the programs ranges from 62 to 103 kilobytes. These binaries are

detected as malicious by at least 1 antivirus, and at most 31. We

have observed that 6 out of 33 binaries can be executed end-to-

end.

To validate that the detected binaries are cryptojacking, we

manually analyze each of the 33 binaries identified as malign. First,

we observe that the binaries in the dataset originate from two

primary sources: project SEISMIC and project MinerRay. SEISMIC

(Wang et al., 2018) is a research project about instrumentation and

monitoring at runtime to detect cryptojacking binaries. MinerRay

is also a research project to detect crypto mining processes in web

browsers (Romano et al., 2020). Both projects have collected the

binaries as real cryptojacking from the web and the dataset is a

union of them.

Second, we observee that all binaries share code from cryp-

tonight (XMRIG, 2016), which is a library for cryptomining

hashing. This observation is consistent with the findings of

Romano et al. (2020) . We find 5 binaries that are multivariant

packages (Cabrera Arteaga et al., 2022) of cryptopnight. A multi-

variant package is a binary containing more than one hashing func-

tion. Concretely, the binaries 0d996462 , d2141ff2 , 046dc081 ,
a32a6f4b and fbdd1efa contain between 2 and 3 versions of

hashing functions cryptonight_hash .
Third, our manual analysis of the binaries reveals 6 main

sources for these differences. (1) Versions: the binaries do not

depend on the same version of cryptonight, (2) Function re-

ordering: The order in which the functions are declared in-

side the binary changes (3) Innocuous expressions: Expressions

have been injected into the program code, but their execution

does not affect the semantic of the original program (4) Func-

tion renaming: The name of the functions exported to JavaScript

have been changed (5) Data layout changes: The data needed

by the cryptominers has different location in the WebAssem-

bly linear memory. (6) Partial cryptonight: Some binaries ex-

clude cryptonight functions, i.e., the cryptonight_create ,
cryptonight_destroy , cryptonight_hash functions. It is

interesting to note that changes in function order, function names,

or data layout leads to different programs that have the same num-

ber of instructions and functions, as is the case for 9 of our malign

binaries.

5.3. Methodology

Based on our dataset of WebAssembly binaries, we follow the

following procedures to answer our research questions.

RQ1: Evasion effectiveness To answer RQ1, we execute the base-

line evasion algorithm discussed in Section 4.3 . We first pass a sus-

picious binary to wasm-mutate. The diversified version is passed

to VirusTotal as a binary oracle. If at least one vendor still detects

the diversified binary, we pass it to wasm-mutate again to stack a

new random transformation. We repeat this process until VirusTo-

tal does not label the binary as malware or reach a limit of 10 0 0

transformations. The process is performed 10 times with 10 differ-

ent random seeds for each binary.

RQ2: Oracle minimization Malicious actors have a limited bud-

get to perform evasion before they get caught. The number of or-

acle calls is a proxy for such a budget, i.e., the lesser the num-

ber of oracle calls, the lesser effort spent. To answer RQ2, we aim

at minimizing the number of oracle calls while keeping the same

evasion effectiveness. In particular, we assess the capability of the

MCMC evasion algorithm to minimize the number of calls to the

malware oracle (Metric 1). For this, we execute the MCMC eva-

sion algorithm (Algorithm 2) one time for each malware binary

of our dataset. We use VirusTotal as an oracle and stop when we

reach a limit of 10 0 0 transformations. Since MCMC has a config-

uration parameter σ , we repeat the process with three σ values:

0.01, 0.3, and 1.1. The σ -value weights exploration and exploitation

of transformations during the evasion process. For example, the

first value is low, favoring exploration at the most, meaning that

the MCMC algorithm will take any new transformation, whether

it increases the fitness function value or not. On the contrary, the

largest value 1.1 favors the exploitation and, meaning that during

evasion, MCMC will only accept transformations with higher val-

ues from the oracle, i.e., more evaded detectors. We manually se-

lect the third value 0.3 as the balance between exploration and

exploitation.

RQ3: Malware functionality A diversified binary that fully evades

the detection, might not be practical due to behavioral or perfor-

mance issues. RQ3 complements our first two research questions

with a correctness and an efficiency evaluation. For every crypto-

jacking that can be executed, we reproduce all cryptominer com-

ponents (described in Section 2.2) and replace the WebAssembly

binaries with variants that fully evade VirusTotal. For each exe-

cutable cryptojacking program, we generate 10 variants with the

baseline evasion algorithm as well as 10 variants with the MCMC

algorithm, with σ value 0.3 to balance the MCMC exploration-

exploitation. Then, we replace the original cryptojacking by each

of the 20 variants in order to determine that the behavior of

the original cryptojacking program is preserved in the variants

(Demetrio et al., 2021).

Our end-to-end pipelines provide data on the number of gener-

ated hashes in the webpage component as an HTML element. Be-

sides, the number of successful or incorrect jobs are logged by the

miner pool. This information can be used to measure both the cor-

rectness and efficiency of the generated WebAssembly variants. To

collect data on the number of hashes per second, the webpage is

accessed with Puppetter, while the miner pool logs are saved to

measure the number of successful and failed jobs with their re-

spective log time. By analyzing these two types of data, the overall

correctness and effectiveness of a diversified WebAssembly binary

can be determined.

To check correctness, we verify that the hashes generated by

the variants are valid. We determine whether the hashes reach

the third component of a cryptojacking (see Section 2.2), i.e., how

many successful and failed jobs are reported by the miner pool. If

a miner pool correctly accepts the hashes, then the cryptojacking

variant generated by our evasion algorithms is considered correct.

To check for efficiency, we measure the frequency of hashes
produced by the variants binaries. For each WebAssembly cryp-

tojacking and its generated variants, we execute and measure the

hashes produced per second, during 10 0 0 s. For each malware vari-

ant, we check if the hash production frequency is still in the same

order of magnitude as the original.

8

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

RQ4: Individual transformation effectiveness As discussed in

Section 4.1 , our diversifier comprises 135 possible transformation

operators. In this research question, we want to study which trans-

formations perform better in evading the VirusTotal malware de-

tection oracle. This investigation will help future researchers and

detectors engineers to improve their detection methods and tackle

subversive transformations.

We use a value of σ = 1 . 1 to tune the MCMC evasion algo-

rithm. With this parameter, the MCMC evasion algorithm only

keeps transformations that significantly contribute to improving

the fitness of the variant. In other words, a transformation is ap-

plied if at least one more detector of VirusTotal is evaded. Then,

we count the number of applied transformations, aggregated by its

type. By measuring this, we obtain the most used one (resp. the

least used), and, therefore, understand where malware researchers

should focus for counter-evasion.

RQ5: Effectiveness against MINOS This research question as-

sesses the effectiveness of our evasion technique with respect

to the state-of-the-art WebAssembly malware detector, MINOS

(Naseem et al., 2021). This detector takes a Wasm binary as input

and creates a 100 × 100 grayscale image from its pure byte stream.

Using a Convolutional Neural Network, the generated image is clas-

sified as benign or malware.

We replicate MINOS. However, the model of MINOS is not pub-

licly available, so we train our own model for this experiment. We

use our own dataset to train the model with 33 malign programs

and 33 benign programs. The 33 malign programs for training MI-

NOS are the same listed in Table 1 , the 33 benign programs are

collected from the original MINOS reproduction steps. Our repro-

duction of MINOS achieves the same results as the original paper,

based on one-off validation. Our reproduction of MINOS is publicly

available at https://github.com/ASSERT-KTH/ralph .

We use MINOS as an oracle and follow the same method pro-

posed in RQ1, passing each one of the binaries in Table 1 to our

diversifier and then to MINOS. For each binary, we do the process

10 times with 10 different seeds, generating a total of 330 variants

with no more than 10 0 0 stacked mutations.

5.4. Metrics

In this section, we define the notions of total and partial

evasion used in this work to measure the impact of the eva-

sion algorithms proposed in Section 4.3 . Besides, we also define

the number of oracle calls and number of stacked
transformations metrics. In addition, we define the metrics

for correct hashes generated by the malware variants and the

hashes generation speed.

Definition 1. Total evasion: Given a malware WebAssembly binary,

an evasion algorithm generates a variant that totally evades detec-

tion if all detectors that originally identify the binary as malware

identify the variant as benign.

Definition 2. Partial evasion: Given a malware WebAssembly bi-

nary, an evasion algorithm generates a variant that partially evades

detection if at least one detector that originally identifies the binary

as malware identifies the variant as benign.

Metric 1. Number of oracle calls: The number of calls made to the

malware oracle during the evasion process.

Metric 2. Number of stacked transformations: The total number of

transformations applied on the initial malware binary during the

evasion process.

Notice that Metric 1 is the number of times that lines 4 and 5

in Algorithms 1 and 2 are executed, respectively. The same could

be applied to Metric 2 , in lines 7 and 13 of Algorithms 1 and 2 ,

respectively.

The main purpose of a WebAssmbly cryptominer is to calculate

hashes. By measuring the number of calculated hashes per time

unit, we can measure how performant the cryptojacking is. There-

fore, the impact of the evasion process over the performance of the

created binary can be measured, calculating the number of hashes

per time unit:

Metric 3. Crypto hashes per second (h/s): Given a WebAssembly

cryptojacking, the crypto hashes per second metric is the number

of successfully generated hashes in one second.

Metric 4. Correct crypto hashes: Given a WebAssembly cryptojack-

ing, the number of correct crypto hashes is the number of hashes

that the WebAssembly cryptojacking generates and that the miner

pool accepts as valid.

6. Experimental results

In section, we answer our four research questions regarding the

feasibility of WebAssembly diversification for malware evasion.

6.1. RQ1. Evasion effectiveness

We run our baseline evasion algorithm with a limit of 10 0 0 iter-

ations per binary. At each iteration, we query VirusTotal to check if

the new binary evades the detection. This process is repeated with

10 random seeds per binary, resulting in a maximum of 10,0 0 0

queries per original binary. In total, we generate 98,714 variants

for the original 33 suspicious binaries.

Table 2 shows the data to answer RQ1. The table contains as

columns: the hash of the program, calculated as the sha256 hash,

as its identifier, the number of initial VirusTotal detectors flag-

ging the malware, the number of evaded antivirus vendors (cf.

Definition 2) and the mean number of iterations needed to gener-

ate a variant that fully evades the detection (cf. Definition 1). The

rows of the table are ordered with respect to the number of detec-

tors for the original binary.

We observe that the baseline evasion algorithm successfully

generates variants that totally evade detection for 30 out of 33 bi-

naries. The mean value of iterations needed to generate a variant

that evades all detectors ranges from 120 to 635 stacked transfor-

mations. For the 30 binaries that completely evade detection, we

observe that the mean number of iterations to evade is correlated

to the number of initial detectors. For example, the a32a6f4b bi-

nary, initially flagged by 18 detectors, requires around 635 itera-

tions, while the 309c32c5 , with only one initial flag, needs 120

iterations. The mean number of iterations needed is always less

than 10 0 0 stacked transformations.

Figure 3 shows the evasion process with four different seeds

for the binary 046dc081 . Each point in the x -axis represents 50

iterations, and the y -axis represents the number of VirusTotal de-

tectors flagging the binary. Three out of 4 seeds manage to totally

evade VirusTotal in less than 250 iterations. We have observed that

there are better evasion techniques than pure random transforma-

tions. For example, the seed represented by the green line partially

evades the oracle but shows no tendency to evade detection before

300 iterations. Besides, some transformations help some classifiers

to detect the mutated binary. These phenomena are empirically ex-

emplified in Fig. 3 in which the curves is not always monotonously

decreasing, like the blue-colored curve. In this case, it goes from 3

VirusTotal detectors to 5 during the 50–100 iterations.

There are 3 binaries for which the baseline algorithm does not

completely evade the detection. In these three cases, the algorithm

misses 5 out 31, 6 out of 30 and 5 out 26 detectors. The explana-

tion is the maximum number of iterations (10 0 0) we use for our

9

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Table 2

Baseline evasion algorithm for VirusTotal. The table contains as columns: the

hash of the program, the number of initial VirusTotal detectors, the maximum

number of evaded antivirus vendors and the mean number of iterations needed

to generate a variant that fully evades detection. The rows of the table are

sorted by the number of initial detectors, from left to right and top to bottom.

Hash #D Max. #evaded Mean #trans.

47d29959 31 26 (83.8%) N/A

9d30e7f0 30 24 (80.0%) N/A

8ebf4e44 26 21 (80.7%) N/A

dc11d82d 20 20 (100.0%) 355

0d996462 19 19 (100.0%) 401

a32a6f4b 18 18 (100.0%) 635

fbdd1efa 18 18 (100.0%) 310

d2141ff2 9 9 (100.0%) 461

aafff587 6 6 (100.0%) 484

046dc081 6 6 (100.0%) 404

643116ff 6 6 (100.0%) 144

15b86a25 4 4 (100.0%) 253

006b2fb6 4 4 (100.0%) 282

942be4f7 4 4 (100.0%) 200

7c36f462 4 4 (100.0%) 236

fb15929f 4 4 (100.0%) 297

24aae13a 4 4 (100.0%) 252

000415b2 3 3 (100.0%) 302

4cbdbbb1 3 3 (100.0%) 295

65debcbe 2 2 (100.0%) 131

59955b4c 2 2 (100.0%) 130

89a3645c 2 2 (100.0%) 431

a74a7cb8 2 2 (100.0%) 124

119c53eb 2 2 (100.0%) 104

089dd312 2 2 (100.0%) 153

c1be4071 2 2 (100.0%) 130

dceaf65b 2 2 (100.0%) 140

6b8c7899 2 2 (100.0%) 143

a27b45ef 2 2 (100.0%) 145

68ca7c0e 2 2 (100.0%) 137

f0b24409 2 2 (100.0%) 127

5bc53343 2 2 (100.0%) 118

e09c32c5 1 1 (100.0%) 120

Fig. 3. The figure shows the evasion process with four seeds for binary 046dc081 .
Each point in the x -axis represents 50 iterations, and the y -axis represents the num-

ber of VirusTotal detectors.

experiments. However, having more iterations seems not a realis-

tic scenario. For example, if some transformations increment the

binary size during the transformation, a considerably large binary

might be impractical for bandwidth reasons.

On the other hand, there is a balance between generating vari-

ants and avoiding detection by defense mechanisms. For example,

VirusTotal detects when it is being stressed with too many requests

and too many queries can be detected and blocked, effectively ru-

ining evasion. In our attack scenario, where VirusTotal is used as

an external detector (see Section 3), we must be mindful of this

limit. In contrast, when defense mechanisms such as MINOS are

placed locally, we believe that the number of queries is not neces-

sarily limited.

Wasm-mutate performs mutations based on the input binary.

In the experiments for RQ1, the input binaries for the baseline al-

gorithm comes from the application of a previous mutation. Yet,

we have observed that some transformations can be applied in any

order. This means that different sequences of transformations can

produce the same binary variant. This often happens when two

mutation targets inside the binary are different, such as two dis-

joint pieces of code. Therefore, a potential parallelization for the

baseline algorithm is possible as soon as transformation sequences

do not interfere with others.

Overall, our experiments prove that wasm-mutate is a powerful

tool to perform malware evasion. By carefully selecting the order

and type of transformations applied, it is possible to generate pro-

gram variants that are both performant and effective at evading

detection. This same idea is explored in the next section.

Answer to RQ1 : The baseline evasion algorithm with wasm-

mutate clearly decrease the detection rate by VirusTotal antivirus

vendors for cryptojacking malware. We achieve total evasion of

WebAssembly cryptojacking malware in 30/33 (90%) of our mal-

ware dataset.

6.2. RQ2. Oracle minimization

With RQ2, we analyze the effect of the MCMC evasion algo-

rithm in minimizing the number of calls to the malware oracle

(Metric 1). To answer RQ2, we execute the MCMC evasion algo-

rithm discussed in Algorithm 2 .

In Table 3 we can observe the impact of the MCMC eva-

sion algorithm on our reference dataset. The first two columns

of the table are the original program’s hash and the number

of initial VirusTotal detectors flagging the malware. The remain-

ing columns are divided into two categories, maximum detec-

tors evaded (Definition 2) and the number of oracle calls if total

(Definition 1). Each one of the two categories contains the result

for both evasion algorithms, first the baseline algorithm (BL) fol-

lowed by the three σ -values analyzed in the MCMC evasion algo-

rithm. Notice that, for the baseline algorithm, the number of oracle

calls is the same value as the number of transformations needed

to evade by construction. We highlight in bold text the values for

which the baseline or the MCMC evasion algorithms are better

than each other, the lower, the better.

We observe that the MCMC evasion algorithm successfully gen-

erates variants that totally evade the detection for 30 out of 33 bi-

naries, it thus as good as the baseline algorithm. The improvement

happens in the number of oracle calls. The oracle calls needed for

the MCMC evasion algorithm are 92% of the needed on average for

the baseline evasion algorithm.

For 21 of 30 binaries that evade detection entirely, we observe

that the mean number of oracle calls needed is lower than those

in the baseline evasion algorithm. For example, f0b24409 needs

11 oracle calls with the MCMC evasion algorithm to fully evade

VirusTotal, while for the baseline evasion algorithm, it needs 127

oracles calls. For those 21 binaries, it needs only 40% of the calls

the baseline evasion algorithm needs.

The impact of the MCMC evasion algorithm is illustrated in

Fig. 4 . Each point in the x -axis represents 50 iterations, and the y -

axis represents the number of VirusTotal detectors flagging binary

046dc081. 2 out of 3 σ -values manage to totally evade VirusTotal

in less than 400 iterations. On the contrary, lower acceptance cri-

teria σ = 1 . 1 (green line) partially evades the oracle, but does not

fully evade within the maximum 10 0 0 iterations limit of the ex-

periment.

The σ value in the Algorithm 2 provides the acceptance cri-

teria for new transformations in the MCMC evasion algorithm.

10

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Table 3

MCMC evasion algorithm for VirusTotal. The first two columns of the table are: the identifier of the original program and the number of initial detectors. The

remaining columns are divided into two categories, maximum detectors evaded if partial evasion and number of oracle calls if total evasion. Each one of the

two categories contains the result of the evasion algorithms, first the baseline algorithm (BL) followed by the three σ -values analysed in the MCMC evasion

algorithm. We highlight in bold text the values for which the baseline or the MCMC evasion algorithms are better from each other. Overall, the MCMC evasion

algorithm needs less oracle calls than the baseline algorithm.

Hash #D Max. evaded #Oracle calls

BL MCMC BL MCMC

σ = 0 . 1 σ = 0 . 3 σ = 1 . 1 σ = 0 . 01 σ = 0 . 3 σ = 1 . 1

47d29959 31 26 19 12 10

9d30e7f0 30 24 17 9 10

8ebf4e44 26 21 13 5 4

dc11d82d 20 20 20 14 15 355 446

0d996462 19 19 19 14 4 401 697

a32a6f4b 18 18 18 6 1 635 625

fbdd1efa 18 18 18 3 3 310 726

d2141ff2 9 9 9 9 5 461 781 783

aafff587 6 6 2 6 6 484 331 413

046dc081 6 6 6 6 5 404 397 159

643116ff 6 6 6 6 1 144 436 631

15b86a25 4 4 4 4 4 253 208 214 131

006b2fb6 4 4 4 4 0 282 380 709

942be4f7 4 4 4 4 4 200 200 200 219

7c36f462 4 4 4 2 0 236 221

fb15929f 4 4 2 4 2 297 475

24aae13a 4 4 4 4 0 252 401 446

000415b2 3 3 3 3 2 302 376 34

4cbdbbb1 3 3 3 3 3 295 204 72 685

65debcbe 2 2 2 2 2 131 33 33 33

59955b4c 2 2 2 2 2 130 33 33 33

89a3645c 2 2 2 2 2 431 319 197 107

a74a7cb8 2 2 2 2 2 124 33 33 33

119c53eb 2 2 2 2 2 104 45 480 18

089dd312 2 2 2 2 2 153 166 167 123

c1be4071 2 2 2 2 2 130 33 33 33

dceaf65b 2 2 2 2 2 140 166 166 132

6b8c7899 2 2 2 2 2 143 33 33 33

a27b45ef 2 2 2 2 2 145 33 33 33

68ca7c0e 2 2 2 2 2 137 33 167 595

f0b24409 2 2 2 2 2 127 11 33 11

5bc53343 2 2 2 2 2 118 33 33 33

e09c32c5 1 1 1 1 0 120 488 921

Fig. 4. The figure shows the MCMC evasion process for the binary 046dc081 . Each

point in the x -axis represents 50 iterations, and the y -axis represents the number

of VirusTotal detectors. The figure shows less chaotic progress for oracle evasion.

We run the MCMC evasion algorithm with three values to bet-

ter understand the extent to which the transformation space is

explored to find a binary that evades successfully. We have ob-

served that for a large value of σ , meaning low acceptance, 16 bi-

naries cannot be mutated to evade VirusTotal entirely. The main

reason is that, in this case, the MCMC evasion algorithm discards

transformations that increase the number of oracle calls. There-

fore, the algorithm gets stuck in local minima and never finds a

binary that entirely evades. On the contrary, a small value of σ

accepts more new transformations even if more detectors flag the

binary.

According to our experiments, σ = 0 . 3 offer a good acceptance

trade-off. However, the best value of σ actually depends on the bi-

nary to mutate. Therefore, we cannot conclude the best value of

σ for the whole dataset. This is a consequence of the particulari-

ties of each one of the original binaries and its detectors. For ex-

ample, we have observed that for the bottom part of Table 3 the

highest value of σ works better overall. The main reason is the

low number of original detectors. In those cases, the exploration

space for transformations is smaller. Thus, for the MCMC evasion

algorithm, the chances of a local minimum for the fitness func-

tion to be global are larger. Therefore, the MCMC evasion algorithm

with low acceptance criteria can find the binary that fully evades

in fewer iterations. On the contrary, if the number of initial detec-

tors is more significant, the exploration space is too big to explore

in 10 0 0 max iterations. The reason is that the MCMC evasion algo-

rithm applies one transformation per time. While we provide fine-

grained analysis in our work, more than one transformation per

iteration could be applied in the MCMC evasion algorithm to solve

this.

In all 3 cases for which neither the baseline nor the MCMC eva-

sion algorithms could find a binary that fully evades, the maxi-

mum evaded detectors are less for the MCMC evasion algorithm.

The main reason is that the MCMC evasion algorithm might pre-

vent transformations for which the number of detectors increases.

As previously discussed, it is stuck in local minima, which means

that it does not explore transformation paths for which a higher

11

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Table 4

Malware correctness and efficiency. We execute each cryptojacking that can be reproduced, with the original malware, and with 10 baseline variants and 10 MCMC

variants. The first left section indicates the identifier of the original binary and its original frequency of hash generation. The second section of the table shows correctness

percentage and hashes per second for ten variants generated with our baseline algorithm. The third section of the table shows correctness percentage and hashes per

second for ten variants generated with the MCMC algorithm. After each frequency of hashing measurement, we indicate the relative difference with the original frequency,

in parentheses. A difference larger or equal to 1.0 indicates a variant that is faster or as efficient as the original; a difference lower than 1.0 is a variant slower than the

original.

Hash Original h/s Baseline algorithm MCMC algorithm

0d996462 116.0 100% 25 (0.22) 100% 24 (0.21) 100% 26 (0.22) 100% 116 (1.00) 100% 70 (0.60) 100% 67 (0.58)

100% 116 (1.00) 100% 110 (0.95) 100% 30 (0.26) 100% 110 (0.95) 100% 76 (0.66) 100% 60 (0.52)

100% 55 (0.47) 100% 27 (0.23) 100% 23 (0.20) 100% 86 (0.74) 100% 60 (0.52) 100% 72 (0.62)

100% 27 (0.23) 100% 76 (0.66)

a32a6f4b 48.0 100% 25 (0.52) 100% 24 (0.50) 100% 24 (0.50) 100% 26 (0.54) 100% 45 (0.94) 100% 41 (0.85)

100% 26 (0.54) 100% 25 (0.52) 100% 26 (0.54) 100% 46 (0.96) 100% 41 (0.85) 100% 45 (0.94)

100% 26 (0.54) 100% 24 (0.50) 100% 25 (0.52) 100% 44 (0.92) 100% 42 (0.88) 100% 45 (0.94)

100% 23 (0.48) 100% 45 (0.94)

fbdd1efa 37.0 100% 25 (0.68) 100% 25 (0.68) 100% 25 (0.68) 100% 28 (0.76) 100% 47 (1.27) 100% 48 (1.30)

100% 25 (0.68) 100% 26 (0.70) 100% 26 (0.70) 100% 47 (1.27) 100% 47 (1.27) 100% 53 (1.43)

100% 25 (0.68) 100% 25 (0.68) 100% 25 (0.68) 100% 48 (1.30) 100% 48 (1.30) 100% 49 (1.32)

100% 25 (0.68) 100% 47 (1.27)

d2141ff2 113.0 100% 54 (0.48) 100% 55 (0.49) 100% 55 (0.49) 100% 107 (0.95) 100% 107 (0.95) 100% 107 (0.95)

100% 57 (0.50) 100% 56 (0.50) 100% 56 (0.50) 100% 109 (0.96) 100% 106 (0.94) 100% 100 (0.88)

100% 57 (0.50) 100% 53 (0.47) 100% 53 (0.47) 100% 101 (0.89) 100% 100 (0.88) 100% 107 (0.95)

100% 55 (0.49) 100% 107 (0.95)

046dc081 118.0 100% 58 (0.49) 100% 60 (0.51) 100% 59 (0.50) 100% 118 (1.00) 100% 120 (1.02) 100% 119 (1.01)

100% 60 (0.51) 100% 55 (0.47) 100% 62 (0.53) 100% 120 (1.02) 100% 116 (0.98) 100% 120 (1.02)

100% 55 (0.47) 100% 50 (0.42) 100% 57 (0.48) 100% 119 (1.01) 100% 120 (1.02) 100% 119 (1.01)

100% 55 (0.47) 100% 120 (1.02)

006b2fb6 8.0 100% 7 (0.88) 100% 6 (0.75) 100% 4 (0.50) 100% 6 (0.75) 100% 6 (0.75) 100% 6 (0.75)

100% 9 (1.12) 100% 6 (0.75) 100% 4 (0.50) 100% 6 (0.75) 100% 6 (0.75) 100% 6 (0.75)

100% 4 (0.50) 100% 6 (0.75) 100% 4 (0.50) 100% 8 (1.00) 100% 9 (1.12) 100% 6 (0.75)

100% 6 (0.75) 100% 6 (0.75)

number of detectors could lead to better long-term results and,

eventually, full evasion.

Answer to RQ2 : The MCMC evasion algorithm needs fewer or-

acle calls than the baseline algorithm. In 21 cases out of 33, it

needs only 40% of oracle calls compared to the baseline, providing

more stealthiness to the malicious organization directing the eva-

sion. The acceptance criterion σ of the MCMC evasion algorithm

needs to be carefully crafted depending on the original binary.

6.3. RQ3. Malware functionality

To answer RQ3, we select the six binaries we can build and ex-

ecute end-to-end, because we have access to the three components

previously mentioned in Section 2.2 . For those six binaries, we are

able to replace the original WebAssembly binary with variants gen-

erated by our evasion algorithms.

We execute the original binary and the variants generated by

the baseline and MCMC evasion algorithms. The essence of a cryp-

tojacking is to generate hashes at high-speed. Consequently, we

assess the correctness of the variants concerning two properties:

validity of the hashes and frequency of hash generation. With

Metric 4 , we determine the validity of the generated hashes by

checking if the backend miner pool accepts them. The frequency

is measured as the amount of hashes produced by the variant

binaries in one second (Metric 3).

Table 4 summarizes the key data for RQ3. Each row of the ta-

ble corresponds to one binary that can be executed end-to-end, by

reproducing the three components mentioned in Section 2.2 . The

first two values of each row are the original binary’s identifier and

its original frequency of hash generation. Then, for our baseline al-

gorithm, each row has the data for 10 variants generated during a

successful oracle evasion. For each one of the variants, we include

the correctness percentage and the hashes calculated per second.

The last group of columns of the table contains the correctness

percentage and the hashes calculated per second for the 10 vari-

ants generated with the MCMC algorithm. After each frequency of

hashing measurement, we indicate the relative difference with the

original frequency in parentheses. A difference larger or equal to

1.0 means that the variant is faster or as efficient as the original.

On the contrary, the variant is slower if the difference is lower than

1.0. The table contains the information for 120 variants.

We use the backend miner pools (see Section 2.2) of the six

cryptojacking to determine the validity of the hashes computed by

all the programs. All correctness assessments for the 120 variants

indicate that the miner pools do not detect any invalid hash when

executing the WebAssembly cryptominer variants. This means that

the variants synthesized by the baseline and the MCMC algorithms

to evade the malware oracle can still systematically generate valid

hashes.

We have observed that 23 of 120 variants are more efficient

than the original cryptojacking. For example, for the fbdd1efa
binary, all its variants are from 1.27 to 1.43 faster than the orig-

inal hash generation frequency. This phenomenon occurs because

wasm-mutate can perform transformations in the executable code,

which work as optimizations. Our experiments have revealed two

sources of faster WebAssembly variants: loop unrolling transfor-

mations and code replacements that lead to smaller binaries. We

have also found that debloating transformations, which remove

unneeded structures and dead code, results in more hashes being

produced by the cryptominer in the first few seconds of mining,

likely because of faster compilation.

In summary, all this is evidence that focused optimization is a

good primitive for evasion. On the contrary, 97 out of 120 variants

underperform compared to the original binary. The worst case is

the binary 0d996462 . Its slowest variant has 0.20 of the original

generation frequency. The main reason is that wasm-mutate also

introduces non-optimal transformations regarding performance.

The variants generated by the baseline evasion algorithm tend

to be slower than the MCMC evasion algorithm. The MCMC eva-

sion algorithm triggers fewer oracle calls and can generate vari-

ants faster than the ones generated by the evasion algorithm. This

phenomenon is a direct consequence of the MCMC evasion algo-

12

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Fig. 5. Distribution of the number of hashes per second for the variants generated

for the original fbdd1efa cryptojacking. In the figure we include the original bi-

nary (in blue), ten variants generated by the baseline algorithm (in orange), and

ten variants generated by the MCMC evasion algorithm (in green). (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the

web version of this article.)

rithm implementation, which has a selective strategy when apply-

ing transformations on a binary (see Algorithm 2). In summary,

the MCMC evasion algorithm produces variants that fully evade the

VirusTotal oracle with lower performance overhead during execu-

tion. The worst performant variant is only 1.93 times slower for

the MCMC evasion algorithm.

In Fig. 5 , we plot the distribution of the hashes per second for

variants generated for the fbdd1efa cryptojacking. In the figure,

we include the original binary (in blue), the ten variants generated

by the baseline algorithm (in orange), and the ten variants gener-

ated by the MCMC evasion algorithm (in green). Each violin plot

corresponds to the hashes per second. We observe a normal dis-

tribution around the exact number of hashes per second. In this

case, we have observed that the MCMC evasion algorithm provides

a hash-per-second ratio better than the original. This phenomenon

can be observed in the lines inside the violin plots, the green line

is shifted to the right compared to the lines of the blue violin plot.

Answer to RQ3 : Our algorithms synthesize WebAssembly cryp-

tojacking variants that fully evade our malware oracle and that

provide the same functionality as the original. The execution of

evading malware systematically produces valid hashes, and the

variations in performance are imperceptible. For 19% of the gen-

erated variants, we observe better performance, and in the worst

case, the generated variant underperforms by five times the origi-

nal binary.

Fig. 6. Distribution of applied transformation for the MCMC evasion algorithm with

σ = 1 . 1 (low acceptance). The x -axis displays the names of the transformations. The

y -axis indicates the number of transformations found in the generated variants. We

can observe which transformations perform better in order to provide total evasion.

6.4. RQ4. Individual transformation effectiveness

With RQ4, we investigate what individual transformations are

the most appropriate to generate evading malware variants. Both

attackers and defenders can leverage this information as follows.

On the one hand, attackers know which transformation operators

they can discard to speed-up the search for evading malware and

minimize calls to the oracle. On the other hand, defenders can fo-

cus on the most effective transformations to evade antiviruses. For

example, one way to defend against evasion is to use transforma-

tion as a preprocessing stage prior to detection. This can help to

ensure that detection is more robust to potential evasion vectors.

In Fig. 6 we plot the distribution of transformations applied by

the MCMC evasion algorithm with σ = 1 . 1 when it generates vari-

ants that fully evade the VirusTotal oracle. On the x -axis, we pro-

vide the name of the transformation, as wasm-mutate implements

them. The y -axis is the absolute number of transformations found

among the generated variants. The transformations are sorted in

decreasing order of usage in the variants. We use two colors for

transformations: transformations that affect the execution of the

binary (in blue color) and transformations that do not (in orange

color). For example, adding a new type definition does not affect

the execution of the binary, while a peephole transformation does.

First, we concentrate on non-behavioral transformations in or-

ange. The most effective transformation is to add a random func-

tion, which is present 117 times in the evading binaries. The next

most present structural transformation is the modify custom
section transformation. This highlights the sensitivity of mal-

ware detectors to the custom section. We note that custom sec-

tion modification at the bytecode level provides advantages against

source code obfuscation because we are sure that the compiler

does not add metadata information that would help malware de-

tectors. In other words, metadata information injected by compil-

ers into WebAssembly binaries (Hilbig et al., 2021), could be re-

moved from being part of possible detection.

Transformations remove function and remove type also

affect malware detection. This novel observation indicates that

VirusTotal is looking for code common in malware yet dead code.

For example, malware detectors probably check for code that does

not affect the original functionality of the binary. Thus, if this in-

formation is removed, the detector misses the malware. In other

terms, by removing code, the detection surface is reduced.

13

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Listing 4. Original piece of code for the 089a3645c WebAssembly binary.

Listing 5. Peephole mutations of Listing 4 . Only with this mutation VirusTotal

passed from 2 initial detectors to 0 in our experiments.

The most significant transformation to generate evading mal-

ware consists of peephole transformations (the largest bar of the

figure at the left-hand side of the figure). The peephole transfor-

mations operate at the bytecode instruction level. For example, in

Listings 4 and 5 we show a piece of the binary 089a3645c , and

one peephole transformation applied, respectively. The transforma-

tion in the listings corresponds to a variant generated with the

MCMC evasion algorithm. Only this transformation is required to

fully evade for the 089a3645c binary.

Our results show that malware detectors should prioritize the

detection of peephole transformations in WebAssembly, to increase

the likelihood of detecting cryptojacking. For example, the transfor-

mation of Listing 5 can be reversed with static analysis.

When we answer our four research questions, we generate We-

bAssembly cryptominer variants by adding one transformation at

a time (See Section 4.3). This method allows us to answer our re-

search questions at a fine-grained level. For instance, the answer

to RQ4 could only be possible if the transformations are analyzed

one by one in the evasion process. Now, our method can be eas-

ily tuned to one-shot evasion: the algorithms could apply multi-

ple transformations simultaneously to produce evading malware in

one iteration. Consequently, the evasion process proposed in this

work could be faster and more practical for a potential attacker. On

the other hand, our algorithms stop as soon as one binary is diver-

sified enough to provide total evasion. Since the overhead intro-

duced by wasm-mutate is imperceptible, the transformation pro-

cess can generate remarkably more binaries. Our approaches could

escalate to infinite cryptojacking variants.

Answer to RQ4 : Our experiments reveal that peephole trans-

formations are the most effective for WebAssembly cryptojacking

malware evasion. We also show that transformations on non-

executable parts of WebAssembly binaries can contribute to

evasion. These novel observations are crucial for cryptojacking

malware detector vendors to prioritize their work on improving

malware detection.

6.5. RQ5. Effectiveness against MINOS

To evaluate the effectiveness of MINOS at detecting diversified

malware, we reuse the protocol of RQ1. We repeatedly stack ran-

Table 5

The table provides the identifier of the program as its sha256 hash value and

the mean number of iterations required to totally evade MINOS. Each binary

was mutated with the baseline algorithm 10 times.

Hash Mean #trans. Hash Mean #trans.

24aae13a 980.0 000415b2 960.0

59955b4c 38.0 119c53eb 1.0

fb15929f 1.0 5bc53343 33.0

47d29959 100.0 dc11d82d 115.0

a27b45ef 33.0 006b2fb6 1.0

942be4f7 29.0 7c36f462 85.0

0d996462 24.0 15b86a25 1.0

8ebf4e44 92.0 a74a7cb8 38.0

fbdd1efa 1.0 089dd312 68.0

65debcbe 38.0 aafff587 1.0

046dc081 33.0 6b8c7899 38.0

a32a6f4b 1.0 d2141ff2 81.0

68ca7c0e 38.0 dceaf65b 66.0

9d30e7f0 419.0 4cbdbbb1 1.0

643116ff 47.0 c1be4071 38.0

e09c32c5 15.0 f0b24409 33.0

89a3645c 108.0

dom mutations to the original malware binary until MINOS is fully

evaded or the maximum number of iterations is reached. We re-

peat this process 10 times for each binary. The results of our ex-

periment are presented in Table 5 . The table provides the identi-

fier of the program and the mean number of iterations required to

synthesize a variant that fully evades MINOS.

Our technique completely evades MINOS in all cases. In 2 cases

out of 33, wasm-mutate needs more than 900 iterations to evade

MINOS. The main reason is the application of symmetric muta-

tions. For example, in some cases, wasm-mutate performs muta-

tions that copy parts of the binary to another program location.

Thus, when the binary is turned into a grayscale image, the em-

bedding of the image is preserved, i.e., the code has changed, but

the shape of the image has not. The contrary happens when non-

symetric mutations are applied. For example, removing functions

also removes embeddings of the grayscale image used by MINOS.

Remarkably, this experiment shows that WebAssembly diversi-

fication requires fewer iterations to evade MINOS than VirusTotal,

meaning that it is easier to evade MINOS. The minimum number

of iterations needed overall for evading VirusTotal are 118 for the

baseline algorithm Table 2 and 11 for the MCMC algorithm Table 3 ,

while for MINOS, wasm-mutate totally evades detection for 8 out

of 33 binaries in one single iteration. This shows that the MINOS

model is fragile wrt binary diversification. According to those re-

sults, VirusTotal can be considered better than MINOS wrt to cryp-

tojacking detection.

To further enhance the detection capabilities of MINOS, we be-

lieve in binary canonicalization (Bruschi et al., 2007). By creating

a canonical representation of the malware variant before training

and inference, one would help the classifier to better generalize.

This is feasible as it is a preprocessing step in the pipeline. We

believe this is an interesting direction for future work.

Answer to RQ5 : Our approach fully evades detection by the

WebAssembly antivirus MINOS. In our study, we achieve evasion

for all cryptojacking binaries in our dataset. wasm-mutate needs

fewer iterations to totally evade MINOS compared to VirusTotal,

validating VirusTotal as a baseline.

7. Discussion

In this section, we discuss the key challenges we faced, in order

to help future research projects on similar topics.

Dataset size The dataset is smaller than other similar works for

malware evasion. However, the related work does not consider We-

bAssembly – e.g. Ling et al. (2023) focus on Windows. For example,

14

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

while Tekiner and colleagues consider cryptojacking (Tekiner et al.,

2021), we entirely focus only on WebAssembly cryptojacking mal-

ware. In this context, to the best of our knowledge, wasmbench is

the most complete dataset of WebAssembly binaries. We analyze

this dataset through the lens of VirusTotal and systematically ex-

tract all the cryptojacking malware it includes. Despite novelty, we

acknowledge that the limited size of our malware dataset poses a

challenge in terms of the generalizability of our results. Some types

of malware might be absent from our dataset. To address this is-

sue, one solution for future work would consist in expanding the

dataset by using the inherent diversity found within the popular

Cryptonight library. One could utilize the release history of their

GitHub repository to compile and mine distinct, yet semantically

equivalent malware instances. This approach would entail the ex-

ploration of a broader range of variations of cryptojacking malware

Yet, this is considered as a new research paper per se as the pro-

cess of mining and compiling code from a repository’s release his-

tory is both time-consuming and computationally demanding. This

is due to the need to analyze, filter, and compare a vast number

of code commits and releases, as well as to validate their seman-

tic equivalence. This process is even more complex in the case of

malware reproduction due to the complex architecture in which

this type of software operates (cf. Fig. 1 .)

VirusTotal observations The final labelling of binaries for Virus-

Total vendors is not definitive (Zhu et al., 2020). For example, a

VirusTotal vendor could label a binary as benign and change it

later to malign after several weeks. This phenomenon creates a

time window in which slightly changed binaries (fewer iterations

in our case) sometives evade the detection of numerous vendors.

Also, we have observed that when our evasion algorithms man-

age to evade, some VirusTotal vendors result in timeout in several

cases. This suggests that the evasion effectiveness is also due to

performance constraints on the VirusTotal side.

Lack of abstraction A WebAssembly cryptojacking can only exist

with its web complements. As we previously discussed, a browser

cryptojacking needs to send the calculated hashes to a cryptocur-

rency service. This network communication is outside the We-

bAssembly accesses and needs to be delegated to a JavaScript code.

We have observed that, the imports and the memory data of the

WebAssembly binaries have a high variability in our dataset. The

imported functions from JavaScript change from binary to binary.

Their data segments also differ in content and length. This sug-

gests that the whole JavaScript-WebAssembly polyglot package is

the right direction for cryptojacking detection.

Mitigation As we noted in our response to RQ4 and RQ5, we be-

lieve that code canonicalization and is a promising mitigation tech-

nique if they are applied directly to WebAssembly. One way to do

this would be to modify a diversifier such as wasm-mutate into a

binary optimizer completely based on e-graph. This would provide

canonicalization through a compact representation of WebAssem-

bly code. In turn, malware variants with the same ancestor would

be more seen as the “same” program, from its canonical represen-

tation.

8. Conclusion

We have demonstrated the potential for WebAssembly crypto-

jacking malware to be diversified and evade detection by leading

malware detectors, such as VirusTotal and MINOS. Our generated

variants are functional, performant, and do not trigger malware de-

tection. Our evaluation of the technique against 60 state-of-the-art

antiviruses through the meta-tool VirusTotal highlights the superi-

ority of meta-antiviruses over single tailored defenses, even when

the latter are specifically designed for WebAssembly cryptojacking

binaries such as MINOS. By studying effective code transformations

for evading cryptojacking detection, our work provides valuable in-

sights and guidance for researchers in the field to better mitigate

evasion.

As future work, we will improve the evasion fitness functions

by including malware program properties, w.r.t. both evasion and

malware execution performance. Some argue that the future of

malware detection lies in machine learning. In future work, we

believe in using our diversification technique to provide data aug-

mentation for better malware detection.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Afianian, A., Niksefat, S., Sadeghiyan, B., Baptiste, D., 2019. Malware dynamic

analysis evasion techniques: asurvey. ACM Comput. Surv. 52 (6). doi: 10.1145/

3365001 .
Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G.,

Kruegel, C., 2020. When malware is packin’ heat; limits of machine learning
classifiers based on static analysis features. In: Proc. of NDSS .

Aslan, O.A., Samet, R., 2020. A comprehensive review on malware detection ap-
proaches. IEEE Access 8, 6249–6271. doi: 10.1109/ACCESS.2019.2963724 .

Bhansali, S., Aris, A., Acar, A., Oz, H., Uluagac, A.S., 2022. A first look at code obfus-
cation for WebAssembly. In: Proc. of Conf. on Security and Privacy in Wireless

and Mobile Networks doi: 10.1145/3507657.3528560 .

Bian, W., Meng, W., Zhang, M., 2020. Minethrottle: defending against wasm in-
browser cryptojacking. In: Proceedings of The Web Conference 2020. Associa-

tion for Computing Machinery doi: 10.1145/3366423.3380085 .
Bostani, H., Moonsamy, V., 2021. Evadedroid: a practical evasion attack on machine

learning for black-box android malware detection. CoRR abs/2110.03301 https:
//arxiv.org/abs/2110.03301 .

Botacin, M., Ceschin, F., de Geus, P., Grégio, A., 2020. We need to talk about an-

tiviruses: challenges & pitfalls of AV evaluations. Comput. Secur. 95. doi: 10.1016/
j.cose.2020.101859 .

Botacin, M., Domingues, F.D., Ceschin, F., Machnicki, R., Zanata Alves, M.A., de
Geus, P.L., Grégio, A., 2022. Antiviruses under the microscope: a hands-on per-

spective. Comput. Secur. 112. doi: 10.1016/j.cose.2021.102500 .
Bruschi, D., Martignoni, L., Monga, M., 2007. Code normalization for self-mutating

malware. IEEE Secur. Privacy 5 (2), 46–54. doi: 10.1109/MSP.2007.31 .

Bytecodealliance, 2021. wasm-mutate. https://github.com/bytecodealliance/
wasm-tools/tree/main/crates/wasm-mutate .

Cabrera Arteaga, J., Laperdrix, P., Monperrus, M., Baudry, B., 2022. Multi-variant exe-
cution at the edge. In: Proceedings of the 9th ACM Workshop on Moving Target

Defense. Association for Computing Machinery doi: 10.1145/3560828.3564007 .
Cabrera-Arteaga, J., Malivitsis, O.F., Pérez, O.L.V., Baudry, B., Monperrus, M., 2021.

Crow: code diversification for WebAssembly. In: Proceedings of MadWEB doi: 10.

14722/madweb.2021.23xxx .
Castro, R.L., Schmitt, C., Dreo, G., 2019. Aimed: evolving malware with genetic

programming to evade detection. In: 2019 18th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). IEEE, pp. 240–247 .

Chua, M., Balachandran, V., 2018. Effectiveness of android obfuscation on evading

anti-malware. In: Proceedings of the Eighth ACM Conference on Data and Appli-
cation Security and Privacy. Association for Computing Machinery doi: 10.1145/

3176258.3176942 .
Cohen, F.B., 1993. Operating system protection through program evolution. Comput.

Secur. 12 (6), 565–584 .
Dasgupta, P., Osman, Z., 2021. A Comparison of State-of-the-Art Techniques for Gen-

erating Adversarial Malware Binaries. arXiv e-prints arXiv:2111.11487 .

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A., 2021. Functionality-pre-
serving black-box optimization of adversarial windows malware. IEEE Trans. Inf.

Forensics Secur. 16, 3469–3478 .
Egele, M., Scholte, T., Kirda, E., Kruegel, C., 2008. A survey on automated dynamic

malware-analysis techniques and tools. ACM Comput. Surv. 44 (2). doi: 10.1145/
2089125.2089126 .

GoogleLLC, 2022. Virustotal enterprise. https://assets.virustotal.com/vt-360-
outcomes.pdf .

Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wagner, L.,

Zakai, A., Bastien, J., 2017. Bringing the web up to speed with WebAssembly. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation .
Hastings, W.K., 1970. Monte carlo sampling methods using Markov chains and their

applications. Biometrika 57 (1), 97–109 . http://www.jstor.org/stable/2334940

15

J. Cabrera-Arteaga, M. Monperrus, T. Toady et al. Computers & Security 131 (2023) 103296

Hilbig, A., Lehmann, D., Pradel, M., 2021. An empirical study of real-world We-
bAssembly binaries: security, languages, use cases. In: Proceedings of the Web

Conference 2021 .
Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D.B., Wang, Y., Iqbal, F., 2018. Mal-

ware classification with deep convolutional neural networks. In: 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),

pp. 1–5. doi: 10.1109/NTMS.2018.8328749 .
Kaspersky, 2022. The state of cryptojacking in the first three quarters of 2022. https:

//securelist.com/cryptojacking-report-2022/107898/ .

Kelton, C., Balasubramanian, A., Raghavendra, R., Srivatsa, M., 2020. Browser-based
deep behavioral detection of web cryptomining with coinspy. In: Workshop on

Measurements, Attacks, and Defenses for the Web (MADWeb) 2020, pp. 1–12 .
Kharraz, A., Ma, Z., Murley, P., Lever, C., Mason, J., Miller, A., Borisov, N., Anton-

akakis, M., Bailey, M., 2019. Outguard: detecting in-browser covert cryptocur-
rency mining in the wild. In: The World Wide Web Conference. Association for

Computing Machinery doi: 10.1145/3308558.3313665 .

Konoth, R.K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C., Bos, H., Vigna, G.,
2018. Minesweeper: an in-depth look into drive-by cryptocurrency mining and

its defense doi: 10.1145/3243734.3243858 .
Lachtar, N., Ibdah, D., Khan, H., Bacha, A., 2023. Ransomshield: a visualization ap-

proach to defending mobile systems against ransomware. ACM Trans. Priv. Se-
cur. 26 (3). doi: 10.1145/3579822 .

Le, V., Afshari, M., Su, Z., 2014. Compiler validation via equivalence modulo in-

puts. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. Association for Computing Machinery

doi: 10.1145/2594291.2594334 .
Li, D., Li, Q., Ye, Y.F., Xu, S., 2021. Arms race in adversarial malware detection: asur-

vey. ACM Comput. Surv. 55 (1). doi: 10.1145/34 844 91 .
Ling, X., Wu, L., Zhang, J., Qu, Z., Deng, W., Chen, X., Qian, Y., Wu, C., Ji, S., Luo, T.,

et al., 2023. Adversarial attacks against windows pe malware detection: a sur-

vey of the state-of-the-art. Comput. Secur. 103134 .
Liu, L., Wang, B., 2016. Malware classification using gray-scale images and ensem-

ble learning. In: 2016 3rd International Conference on Systems and Informatics
(ICSAI), pp. 1018–1022. doi: 10.1109/ICSAI.2016.7811100 .

Lu, G., Debray, S.K., 2013. Weaknesses in defenses against web-borne malware -
(short paper). In: Rieck, K., Stewin, P., Seifert, J. (Eds.), Detection of Intrusions

and Malware, and Vulnerability Assessment - 10th International Conference,

DIMVA. Proceedings doi: 10.1007/978- 3- 642- 39235- 1 _ 8 .
Lu, L., Yegneswaran, V., Porras, P., Lee, W., 2010. Blade: an attack-agnostic approach

for preventing drive-by malware infections. In: Proceedings of the 17th ACM

conference on Computer and communications security, pp. 440–450 .

Lundquist, G.R., Mohan, V., Hamlen, K.W., 2016. Searching for software diversity:
attaining artificial diversity through program synthesis. In: Proceedings of the

2016 New Security Paradigms Workshop, pp. 80–91 .

Monero, 2022. Monero. https://www.getmonero.org/ .
Moser, A., Kruegel, C., Kirda, E., 2007. Limits of static analysis for malware detec-

tion. In: Twenty-Third Annual Computer Security Applications Conference (AC-
SAC 2007), pp. 421–430. doi: 10.1109/ACSAC.2007.21 .

Mozilla, 2019. Protections Against Fingerprinting and Cryptocurrency Mining
Available in Firefox Nightly and Beta. https://blog.mozilla.org/futurereleases/

2019/04/09/protections- against- fingerprinting- and- cryptocurrency- mining-
available- in- firefox- nightly- and- beta/ .

Mozilla, 2022. Using web workers. https://developer.mozilla.org/en-US/docs/Web/

API/Web _ Workers _ API/Using _ web _ workers .
Musch, M., Wressnegger, C., Johns, M., Rieck, K., 2019a. New Kid on the Web:

A Study on the Prevalence of WebAssembly in the Wild. 10.1007/978-3-030-
22038-9_2

Musch, M., Wressnegger, C., Johns, M., Rieck, K., 2019. Thieves in the browser: web-
based cryptojacking in the wild. In: Proceedings of the 14th International Con-

ference on Availability, Reliability and Security. Association for Computing Ma-

chinery doi: 10.1145/3339252.3339261 .
Naseem, F., Aris, A., Babun, L., Uluagac, S., Tekiner, E., 2021. MINOS: A Lightweight

Real-Time Cryptojacking Detection System. Ndss doi: 10.14722/NDSS.2021.24 4 4 4 .

Payer, M., 2014. Embracing the new threat: towards automatically self-diversifying
malware. In: The Symposium on Security for Asia Network, pp. 1–5 .

Peng, P., Yang, L., Song, L., Wang, G., 2019. Opening the blackbox of virustotal: ana-
lyzing online phishing scan engines. In: Proceedings of the Internet Measure-

ment Conference. Association for Computing Machinery doi: 10.1145/3355369.
3355585 .

Ren, X., Ho, M., Ming, J., Lei, Y., Li, L., 2021. Unleashing the hidden power of
compiler optimization on binary code difference: an em pirical study. In: Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation. Association for Computing Machinery
doi: 10.1145/3453483.3454035 .

Rokicki, T., Maurice, C., Botvinnik, M., Oren, Y., 2022. Port contention goes portable:
port contention side channels in web browsers. In: Proceedings of the 2022

ACM on Asia Conference on Computer and Communications Security. Associ-
ation for Computing Machinery doi: 10.1145/3488932.3517411 .

Romano, A., Lehmann, D., Pradel, M., Wang, W., 2022. Wobfuscator: obfuscat-

ing javascript malware via opportunistic translation to webassembly. In: Pro-
ceedings of the 2022 IEEE Symposium on Security and Privacy (S&P 2022),

pp. 1101–1116 .
Romano, A., Zheng, Y., Wang, W., 2020. Minerray: semantics-aware analysis for ev-

er-evolving cryptojacking detection. In: 2020 35th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 1129–1140 .

Schkufza, E., Sharma, R., Aiken, A., 2012. Stochastic superoptimization. ACM SIGPLAN

Notices 48. doi: 10.1145/2451116.2451150 .
Tekiner, E., Acar, A ., Uluagac, A .S., Kirda, E., Selcuk, A .A ., 2021. In-browser crypto-

mining for good: an untold story. In: 2021 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPS), pp. 20–29. doi: 10.1109/

DAPPS52256.2021.0 0 0 08 .
VirusTotal, 2020. VirusTotal - Home. https://www.virustotal.com/gui/home/search .

Wang, W., Ferrell, B., Xu, X., Hamlen, K.W., Hao, S., 2018. Seismic: secure in-lined

script monitors for interrupting cryptojacks. In: Lopez, J., Zhou, J., Soriano, M.
(Eds.), Computer Security. Springer International Publishing, Cham, pp. 122–142 .

Wang, W., Sun, R., Dong, T., Li, S., Xue, M., Tyson, G., Zhu, H., 2021. Exposing
weaknesses of malware detectors with explainability-guided evasion attacks.

arXiv preprint arXiv:2111.10085 .
Willsey, M., Nandi, C., Remy Wang, Y., Flatt, O., Tatlock, Z., Panchekha, P., 2020. EGG:

fast and extensible equality saturation. arXiv e-prints arXiv:2004.03082 .

Xia, M., Gong, L., Lyu, Y., Qi, Z., Liu, X., 2015. Effective real-time android application
auditing. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy.

IEEE Computer Society .
XMRIG, 2016. Xmrig. https://github.com/xmrig/xmrig .

Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., Wang, G., 2020. Measuring
and modeling the label dynamics of online anti-malware engines. 29th USENIX

Security Symposium (USENIX Security 20). USENIX Association . https://www.

usenix.org/conference/usenixsecurity20/presentation/zhu

Javier Cabrera-Arteaga is a Ph.D. student at KTH Royal Institute of Technology. His

research interests are in the fields of Automated Software Engineering, Automated
Testing and Software Diversification.

Martin Monperrus is Professor of Software Technology at KTH Royal Institute of
Technology. His research lies in the field of software engineering with a current fo-

cus on automatic program repair, AI on code and program hardening. He received

a Ph.D. from the University of Rennes, and a Master’s degree from Compiègne Uni-
versity of Technology.

Tim Toady is a programmer analyst living in Merise, Estonia. His research interests
include taint splatter analysis, Easter eggs and the usage of fakes in computing.

Benoit Baudry is a Professor in Software Technology at the KTH Royal Institute of

Technology. His research focuses on automated software engineering, software di-
versity and software testing. He favors exploring code execution over code on disk.

16

WASM-MUTATE: FAST AND EFFECTIVE BI-
NARY DIVERSIFICATION FOR WEBASSEMBLY

Javier Cabrera-Arteaga, Nick Fitzgerald, Martin Monperrus, Benoit Baudry
Computers & Security, 2024

https://www.sciencedirect.com/science/article/pii/S01674048240
00324

115

https://www.sciencedirect.com/science/article/pii/S0167404824000324
https://www.sciencedirect.com/science/article/pii/S0167404824000324

WASM-MUTATE: Fast and Effective Binary Diversification for
WebAssembly
Javier Cabrera-Arteagaa,∗, Nicholas Fitzgerald,b, Martin Monperrusa and Benoit Baudrya
aKTH Royal Institute of Technology, Stockholm, Sweden
bFastly Inc., San Francisco, USA

ABSTRACT
WebAssembly is the fourth officially endorsed Web language. It is recognized because of its effi-
ciency and design, focused on security. Yet, its swiftly expanding ecosystem lacks robust software
diversification systems. We introduce WASM-MUTATE, a diversification engine specifically designed
for WebAssembly. Our engine meets several essential criteria: 1) To quickly generate functionally
identical, yet behaviorally diverse, WebAssembly variants, 2) To be universally applicable to any
WebAssembly program, irrespective of the source programming language, and 3) Generated variants
should counter side-channels. By leveraging an e-graph data structure, WASM-MUTATE is imple-
mented to meet both speed and efficacy. We evaluate WASM-MUTATE by conducting experiments
on 404 programs, which include real-world applications. Our results highlight that WASM-MUTATE
can produce tens of thousands of unique and efficient WebAssembly variants within minutes. Signif-
icantly, WASM-MUTATE can safeguard WebAssembly binaries against timing side-channel attacks,
especially those of the Spectre type.

1. Introduction
WebAssembly (Wasm) is the fourth official language of

the web, complementing HTML, CSS and JavaScript as a
fast, platform-independent bytecode [23, 42]. Since its in-
troduction in 2015, it has seen rapid adoption, with sup-
port from all major web browsers. WebAssembly has also
been adopted outside of browsers, e.g., platforms like Fastly
and Cloudflare use Wasm as their core technology [19]. Re-
cently, in addition to major ones like LLVM, more compil-
ers and tools can output WebAssembly binaries [25, 47, 28].
With this prevalence, software protection techniques for
WebAssembly are remarkably needed [29].

Software diversification is a well-known software pro-
tection technique [13, 5, 21], consisting of producing nu-
merous variants of an original program, each retaining
equivalent functionality. Software diversification in Web-
Assembly has several application domains, such as opti-
mization [6] and malware evasion [8] research. It can also
be used for fuzzing, an example of this was the discovery of
a CVE in Fastly in 2021 [20], achieved through transform-
ing WebAssembly binary with functionally equivalent code
replacements.

To develop an effective WebAssembly diversification
engine, several key requirements must be met. First, the en-
gine should be language-agnostic, enabling diversification
of any WebAssembly code, regardless of the source pro-
gramming language and compiler toolchain. Second, it must
have the capability to swiftly generate functionally equi-
valent variants of the original code. The speed at which

∗Corresponding authors
thumbnails/cas-email.jpegjavierca@kth.se (J. Cabrera-Arteaga); nfitzgerald@fastly.com (N.

Fitzgerald,); monperrus@kth.se (M. Monperrus); baudry@kth.se (B. Baudry)
ORCID(s): 0000-0001-9399-8647 (J. Cabrera-Arteaga);

0000-0002-0209-2805 (N. Fitzgerald,); 0000-0003-3505-3383 (M.
Monperrus); 0000-0002-4015-4640 (B. Baudry)

this diversification occurs holds potential for real-time ap-
plications, including moving target defense [7]. The engine
should also possess the ability to harden potential attacks
by producing sufficiently distinct code variants. This paper
presents an original engine, WASM-MUTATE, that addresses
all these requirements.

WASM-MUTATE is a tool that automatically transforms a
WebAssembly binary program into variants that preserve the
original functionality. The core of the diversification engine
relies on an e-graph data structure [50]. To the best of our
knowledge, this work is the first to use an e-graph for soft-
ware diversification inWebAssembly. An e-graph offers one
essential property for diversification: every path through the
e-graph represents a functionally equivalent variant of the
input program [50, 39]. A random e-graph traversal is virtu-
ally costless, supporting the generation of tens of thousands
of equivalent variants from a single seed program in minutes
[31]. Consequently, the choice of e-graphs is the key to build
a diversification tool that is both effective and fast.

We evaluate WASM-MUTATE by examining its ability to
generate WebAssembly variants. We have based our em-
pirical evaluation on an existing corpus from the diversifi-
cation literature [1, 25, 38]. Additionally, we measure the
speed at whichWASM-MUTATE can produce the first variant
that demonstrates a trace different from the original. Signif-
icantly, we evaluate the performance impact on generated
variants of real-world WebAssembly programs [25]. Our
security assessment of WASM-MUTATE involves determin-
ing the extent to which diversification can safeguard against
Spectre attacks. We carry out this assessment using Web-
Assembly programs previously identified as susceptible to
Spectre attacks [38].

Our results demonstrate that WASM-MUTATE can gen-
erate thousands of variants in minutes. These variants

Cabrera-Arteaga et al. Page 1 of 20

have unique machine code after compilation with Cranelift1
(static diversity) and the variants exhibit different traces
at runtime (dynamic diversity). Moreover, we empirically
demonstrate that, in the worst scenario, the performance im-
pact on the generated variants is maintained within the same
order of magnitude as the original program. Remarkably,
our experiments provide evidence that the generated vari-
ants are hardened against Spectre attacks. To sum up, the
contributions of this work are:

• The design and implementation of aWebAssembly di-
versification engine, based on semantic-preserving bi-
nary rewriting rules.

• Empirical evidence of the diversity of variants created
by WASM-MUTATE, both in terms of static binaries
and execution traces.

• Empirical evidence of the performance impact of the
variants created by WASM-MUTATE in terms of size
and execution time.

• A clearcut demonstration that WASM-MUTATE can
protect WebAssembly binaries against timing side-
channel attacks, specifically, Spectre.

• An open-source repository, where WASM-
MUTATE is publicly available for future research
https://github.com/bytecodealliance/wasm-tools/

tree/main/crates/wasm-mutate.
This paper is structured as follows. In section 2, we intro-

duce WebAssembly, the concepts of semantic equivalence,
andwhat we state as a rewriting rule. In section 3, we explain
and detail the architecture and implementation of WASM-
MUTATE. We formulate our research questions in section 4,
answering them in section 5. We discuss open challenges
related to our research in section 6, to help future research
projects on similar topics. In section 7 we highlight works
related to our research on software diversification. We final-
ize with our conclusions section 8.

2. Background
In this section, we define and formulate the foundation

of this work: WebAssembly and its runtime structure. We
also enunciate the notions of rewriting rules in the context
of our work.
2.1. WebAssembly

WebAssembly (Wasm) is a binary instruction set ini-
tially meant for the web. It was adopted as a standardized
language by the W3C in 2017 [23]. One of Wasm’s pri-
mary advantages is that it defines its own Instruction Set
Architecture (ISA), making it platform-independent. As a
result, a Wasm binary can execute on virtually any plat-
form, including web browsers and server-side environments.
WebAssembly programs are compiled ahead-of-time from

1https://cranelift.dev/

source languages such as C/C++, Rust, and Go, utilizing
compilation pipelines like LLVM. A WebAssembly binary
packages a collection of sections. Each one of these sec-
tions could be optional and might contain specific restric-
tions. For example, some sections must follow a relative
order concerning other sections. The organization of the
WebAssembly binary into sections boosts the validation and
compilation of the binary once on the host engines.

At runtime, WebAssembly programs operate on a vir-
tual stack that holds primitive data types. Such data is then
operated by typed stack instructions. A WebAssembly pro-
gram also declares linear memory and globals, which are
used to store, manipulate, and share data during program ex-
ecution, e.g. to share data with the host engine of the Web-
Assembly binary. In Listing 1, we provide an example of a
Rust program that contains a function declaration, a loop, a
loop conditional, and a memory access. When the Rust code
is compiled to WebAssembly, it produces the code shown in
Listing 2.
fn main() {

let mut arr = [1, 2, 3, 4, 5];

// Variable assignment

let mut sum = 0;

// Loop and memory access

for i in 0..arr.len() {

sum += arr[i];

}

// Use of external function

println!("Sum of array elements: {}", sum);

}

Listing 1: A Rust program containing function declaration,
loop, conditional and memory access.

(module

(@custom "producer" "llvm..")

(import "env" "println" (func $println (param i32)))

(memory 1)

(export "memory" (memory 0))

(func $main

(local $sum i32)

(local $i i32)

(local $arr_offset i32)

; Initialize sum to 0 ;

i32.const 0

local.set $sum

; Initialize arr_offset to point to start of the array

in memory ;

i32.const 0

local.set $arr_offset

; Initialize the array in memory;

i32.const 0

i32.const 1

i32.store

...

i32.store

...

loop

local.get $i

i32.const 5

i32.lt_s

if

; Load array[i] and add to sum ;

local.get $arr_offset

local.get $i

...

Cabrera-Arteaga et al. Page 2 of 20

; Increment i ;

local.get $i

i32.const 1

i32.add

local.set $i

br 0

else

; End loop ;

i32.const 0

end

end

; Call external function to print sum ;

local.get $sum

call $println

)

; Start the main function ;

(start $main)

)

Listing 2: SimplifiedWebAssembly code for the program of
Listing 1.

WebAssembly is designed with isolation as a primary
consideration, usually referred as Software Fault Isolation
(SFI). For instance, a WebAssembly binary cannot access
the memory of other binaries or cannot interact directly with
the browser’s APIs, such as the DOM or the network. In-
stead, communication with these features is constrained to
functions imported from the host engine, ensuring a secure
and safe WebAssembly environment. Moreover, control
flow inWebAssembly ismanaged through explicit labels and
well-defined blocks, which means that jumps in the program
can only occur inside blocks, unlike regular assembly code
[24]. Besides, function tables are constructed statically.
Overall, the "least privilege" principle is the fundamental se-
curity requirement. This principle is reflected in the lack of
certain features that are common in other programming en-
vironments. For example, reflection, a feature available in
many high-level programming languages like Java and C#,
is not possible in WebAssembly.

The WebAssembly runtime structure is described in the
WebAssembly specification and it includes 10 key elements:
the Store, Stack, Locals, Module Instances, Function In-
stances, Table Instances, Memory Instances, Global In-
stances, Export Instances, and Import Instances. These com-
ponents interact during the execution of a WebAssembly
program, collectively defining the state of a program dur-
ing its runtime. Yet, three of the previous runtime compo-
nents, the Stack, Memory, and Globals, are particularly sig-
nificant in maintaining the state of a WebAssembly program
during its execution. The Stack holds both values and con-
trol frames, with control frames handling block instructions,
loops, and function calls. The Memory represents the linear
memory of a WebAssembly program, consisting of a con-
tiguous array of bytes. The Globals save data that is glob-
ally accessible by any code inside the WebAssembly pro-
gram and that can be optionally accessed by the host engine.
In this paper, we highlight the aforementioned three com-
ponents to define, compare, and validate the state of Web-
Assembly programs during their execution.

2.2. Rewriting rules
Our definition of a rewriting rule draws from the one pro-

posed by Sasnauskas et al. [43], and integrates a predicate
to specify the replacement condition. Concretely, a rewriting
rule is defined as a tuple, denoted as (LHS, RHS, Cond). Here,
LHS refers to the code segment slated for replacement, RHS is
the proposed replacement, and Cond stipulates the conditions
under which the replacement is acceptable. Importantly, LHS
and RHS are meant to be functionally equivalent.

We focus on rewriting rules that guarantee functional
equivalence. Functional equivalence refers to the notion that
two programs are considered equivalent if, for the same in-
put of the same domain they produce the same output[32].

For example, the rewriting rule (x, x i32.or x, {}) im-
plies that the LHS ’x’ is to be replaced by an idempotent bit-
wise i32.or operation with itself, absent any specific condi-
tions. Notice that, for this specific rule, the commutative
property shared by LHS and RHS, symbolized as (LHS, RHS)=

(RHS, LHS). Besides, the Cond element could be an arbitrary
criterion. For instance, the condition for applying the afore-
mentioned rewriting rule could be to ensure that the newly
created binary file does not exceed a threshold binary size.

Based on our understanding, our research is one of the
first to apply the concept of rewriting rules toWebAssembly.
This will expand the potential use cases of WASM-MUTATE.
Beyond its role as a diversification tool, it can also be used
as a standard tool for conducting program transformations in
WebAssembly.

3. Design of WASM-MUTATE
In this section, we present WASM-MUTATE, a tool to

diversify WebAssembly binaries and produce functionally
equivalent variants.
3.1. Overview

The primary objective of WASM-MUTATE is to perform
diversification, i.e., generate functionally equivalent variants
from a givenWebAssembly binary input. WASM-MUTATE’s
central approach involves synthesizing these variants by sub-
stituting parts of the original binary using rewrite rules. It
leverages a comprehensive set of rewriting rules, boosted by
diversification space traversals using e-graphs.

In Figure 1 we illustrate the workflow of WASM-
MUTATE: it starts with a WebAssembly binary as input 1 .
It parses the original binary 2 , turning the input program
into appropriate abstractions, in particular, WASM-MUTATE
builds the control flow graph and data flow graph. Using the
defined rewriting rules, WASM-MUTATE builds an e-graph
3 for the original program. An e-graph packages every
possible equivalent code derivable from the given rewrit-
ing rules [50, 39]. Thus, at this stage, WASM-MUTATE ex-
ploits a key property of e-graphs: any path traversal through
the e-graph results in a semantically equivalent code. Then,
the diversification process starts, with parts of the original
program being randomly replaced by the result of travers-
ing the e-graph 4 . The outcome of WASM-MUTATE is

Cabrera-Arteaga et al. Page 3 of 20

wasm-mutate

...

135 rewriting rules

1 2

3

4

5

Input Wasm
binary

Output diversified
Wasm binary

binary IR

e-graph
 generation

e-graph
 traversal

e-graph transformed
IR

Figure 1: WASM-MUTATE high-level architecture. It generates semantically equivalent
variants from a given WebAssembly binary input. Its central approach involves synthesizing
these variants by substituting parts of the original binary using rewriting rules, boosted by
diversification space traversals using e-graphs(refer to subsection 3.3).

a functionally equivalent variant of the original binary 5 .
The tool guarantees functionally equivalent variants because
each rewrite rule is semantic preserving.
3.2. WebAssembly Rewriting Rules

In total, there are 135 possible rewriting rules imple-
mented in WASM-MUTATE, those rules are grouped under
several categories, called hereafter meta-rules. For example,
125 rewriting rules are implemented as part of a peephole
meta-rule. In the following, we present 7 meta-rules.

Add type: In WebAssembly, the type section wraps
definitions of signatures for the binary functions. WASM-
MUTATE implements two rewriting rules, one of which is
illustrated in the following.
LHS (module

(type (;0;) (func (param i32) (result i64)))

RHS (module

(type (;0;) (func (param i32) (result i64)))

+ (type (;0;) (func (param i64) (result i32 i64)))

This transformation generates random function signa-
tures with a random number of parameters and results count.
This rewriting rule does not affect the runtime behavior of
the variant. It also guarantees that the index of the already
defined types is consistent after the addition of a new type.
This is because WebAssembly programs cannot access or
use a type definition during runtime, they are only used to
validate the signature of a function during compilation and
validation in the host engine. From the security perspective,
this transformation prevents static binary analysis. For ex-
ample, to avoid malware detection based on a signature set
[8].

Add function: The function and code sections of aWeb-
Assembly binary contain function declarations and the code
body of the declared functions, respectively. To add a new
function, WASM-MUTATE first creates a random type signa-
ture. Then, the random function body is created. The body

of the function consists of returning the default value of the
result type. The following example illustrates this rewriting
rule.
LHS (module

(type (;0;) (func (param i32 f32) (result i64)))

RHS (module

(type (;0;) (func (param i32 f32) (result i64)))

+_______(func (;0;) (type 0) (param i32 f32) (result i64)

+__________i64.const 0)

WASM-MUTATE never adds a call instruction to this
function. So in practice, the new function is never exe-
cuted. Therefore, executing both, the original binary and
the mutated one, with the same input, leads to the same final
state. This strategy follows the work of Cohen, advocating
the insertion of harmless ‘garbage’ code into a program [13].
These transformations increase the static complexity of the
generated variant.

Remove dead code: WASM-MUTATE can randomly re-
move dead code. In particular, WASM-MUTATE removes:
functions, types, custom sections, imports, tables, memories,
globals, data segments, and elements that can be validated as
dead code with guarantees. For instance, to delete a memory
declaration, the binary code must not contain a memory ac-
cess operation. Separated rewriting rules are includedwithin
WASM-MUTATE for each of the elements above. For a more
concrete example, the following listing illustrates the case of
a function removal.

LHS (module (type (func)))

RHS - (module (import "" "" (func)))

Cond The removed function is not called, it is not exported, and it is

not in the binary _table.

Cabrera-Arteaga et al. Page 4 of 20

In the context of the previous rewriting rule, when re-
moving a function, WASM-MUTATE ensures that the result-
ing binary remains valid and functionally identical to the
original binary: it checks that the deleted function was nei-
ther called within the binary code nor exported in the binary
external interface. As exemplified above, WASM-MUTATE
might also eliminate a function import while removing the
function.

Eliminating dead code serves a dual purpose: it mini-
mizes the attack surface available to potential malicious ac-
tors [2] and strengthens the resilience of security protocols.
For instance, it can obstruct signature-based identification
[8]. With Narayan and colleagues having demonstrated the
feasibility of Return-Oriented Programming (ROP) attacks
[38], the removal of dead code can stop jumps to harmful
behaviors within the binary. On the other hand, the act of
removing dead code reduces the binary’s size, improving
its non-functional properties, in particular bandwidth con-
straints.

Edit custom sections: Custom sections in Web-
Assembly are used to store metadata, such as the name of
the compiler that produces the binary or the symbol infor-
mation for debugging. Thus, this section does not affect the
execution of the WebAssembly program. WASM-MUTATE
includes one transformation to edit custom sections. This is
illustrated in the following rewriting rule.
LHS (module

...

- (@custom "CS42" "zzz..."

RHS (module

...

+ (@custom "CS42" "xxx...")

The Edit Custom Section transformation operates by ran-
domly modifying either the content or the name of the cus-
tom section. As illustrated by Cabrera-Arteaga et al. [8],
such a rewriting strategy also acts as a potent deterrent
against compiler identification techniques. Furthermore, it
can also be employed innovatively to emulate the character-
istics of a different compiler, masquerading as another com-
pilation source. This strategy ultimately aids in shrinking the
identification and fingerprinting surface accessible to poten-
tial adversaries, thus enhancing overall system security, or
making it a moving target.

If swapping: In WebAssembly, an if-construction con-
sists of a consequence and an alternative. The branching
condition is executed right before the if instruction. If the
value at the top of the stack is greater than 0, then the con-
sequence code is executed, otherwise the alternative code is
run. The if swapping transformation swaps the consequence
and alternative codes of an if-construction.

To swap an if-construction in WebAssembly, WASM-
MUTATE inserts a negation of the value at the top of the stack
right before the if instruction. In the following rewriting
rule, we show howWASM-MUTATE performs this rewriting.
LHS (module

(func ...) (

condition C

(if A else B end)

)

)

RHS (module

(func ...) (

condition C

i32.eqz

(if B else A end)

)

)

The consequence and alternative codes are annotated
with the letters A and B, respectively. The condition of the
if-construction is denoted as C. The negation of the condi-
tion is achieved by adding the i32.eqz instruction in the RHS

part of the rewriting rule. The i32.eqz instruction compares
the top value of the stack with zero, pushing the value 1 if
the comparison is true. Some if-constructions may not have
either a consequence or an alternative code. In such cases,
WASM-MUTATE replaces the missing code block with a sin-
gle nop instruction.

Loop Unrolling: Loop unrolling is a technique em-
ployed to enhance the performance of programs by reducing
loop control overhead [16]. WASM-MUTATE incorporates a
loop unrolling transformation and utilizes the Abstract Syn-
tax Tree (AST) of the original WebAssembly binary to iden-
tify loop constructions.

When WASM-MUTATE selects a loop for unrolling, its
instructions are divided by first-order breaks, which are
jumps to the loop’s start. This separation ensures that
branching instructions controlling the loop body do not re-
quire label index adjustments during unrolling. The same
holds for instructions continuing to the next loop iteration.
As the loop unrolling process unfolds, a new WebAssembly
block is created to encompass both the duplicated loop body
and the original loop. Within this newly established block,
the previously separated groups of instructions are copied.
These replicated groups of instructions mirror the original
ones, except for branching instructions jumping outside the
loop body, which need their jumping indices increased by
one. This modification is required due to the introduction
of a new block ... end scope around the loop body, which
affects the scope levels of the branching instructions.

In the following text, we illustrate the rewriting rule for
a function that contains a loop.
LHS (module

(func ...) (

(loop A br_if 0 B end)

)

)

RHS (module

(func ...) (

(block

(block A' br_if 0 B' br 1 end)

(loop A' br_if 0 B' end)

end)

)

)

Cabrera-Arteaga et al. Page 5 of 20

The loop in the LHS part features a single first-order break,
indicating that its execution will cause the program to con-
tinue iterating through the loop. The loop body concludes
right before the end instruction, which highlights the point at
which the original loop breaks and resumes program execu-
tion. Upon selecting the loop for unrolling, its instructions
are divided into two groups, labeled A and B. As illustrated
in the RHS part, the unrolling process entails creating two
new WebAssembly blocks. The outer block encompasses
both the original loop structure and the duplicated loop body,
while the inner blocks, denoted as A' and B', represent mod-
ifications of the jump instructions in groups A and B, respec-
tively. Notice that, any jump instructions within A' and B'

that originally leaped outside the loop must have their jump
indices incremented by one. This adjustment accounts for
the new block scope introduced around the loop body dur-
ing the unrolling process. Furthermore, an unconditional
branch is placed at the end of the unrolled loop iteration’s
body. This ensures that if the loop body does not continue,
the tool breaks out of the scope instead of proceeding to the
non-unrolled loop.

Loop unrolling enhances resistance to static analysis
while maintaining the original performance [40]. In partic-
ular, Crane et al. [15] have validated the effectiveness of
adding and modifying jump instructions against Function-
Reuse attacks. Our rewriting rule has the same advantages, it
unrolls loops while 1) incorporating new jumps and 2) edit-
ing existing jumps, as it can be observed with the addition
of the br_if, end, and br instructions.

Peephole: This meta-rule is about rewriting peephole
instruction sequences within function bodies, signifying the
most granular level of rewriting. We implement 125 rewrit-
ing rules for this group in WASM-MUTATE. We include
rewriting rules that affect the memory of the binary. For
example, we include rewriting rules that create random as-
signments to newly created global variables. For these rules,
we incorporate several conditions, denoted by Cond, to ensure
successful replacement. These conditions can be utilized in-
terchangeably and combined to constrain transformations.

For instance, WASM-MUTATE is designed to guarantee
that instructions marked for replacement are deterministic.
We specifically exclude instructions that could potentially
cause undefined behavior, such as function calls, from being
mutated. For this rewriting type, WASM-MUTATE only al-
ters stack and memory operations, leaving the control frame
labels unaffected. In the following, we show 14 peephole
rewriting rules.

We include well-known identity reduction rewriting
rules, we exemplify them in the following. Observe that the
primitive type of the rewriting rules can be changed to the
other primitive WebAssembly data types.

LHS i32.or ?x i32.const.-1

RHS i32.const.-1

LHS f32.mul ?x f32.const.1

RHS ?x

LHS i32.eq ?x i32.const.0

RHS i32.eqz ?x

LHS i64.shl ?x i64.const.0

RHS ?x

We have also incorporated commutative rewriting rules.
The following three rules provide examples. As discussed
earlier, observe that the subexpressions’ type can be changed
to any of the original four primitive WebAssembly data
types.

LHS select ?y ?y ?x

RHS ?y

LHS i32.add ?x ?y

RHS i32.add ?y ?x

LHS i32.mul ?x ?y

RHS i32.mul ?y ?x

The peephole meta-rule also includes associative rewrit-
ing rules. In the following, we exemplify two of them.

LHS i32.mul ?x (i32.mul ?y ?z)

RHS i32.mul (i32.mul ?x ?y) ?z

LHS i32.add ?x (i32.add ?y ?z)

RHS i32.add (i32.add ?x ?y) ?z

We have also incorporated several strength reduction
transformations. We exemplify them in the following three
rewriting rules. Note that the extent of these rewriting rules
can be adjusted as desired. For instance, although we only
include reductions up to multiplication by 8 (in the rightmost
rewriting rule), they can be extended to any power of 2.

LHS i32.shl ?x i32.const.1

RHS i32.mul ?x i32.const.2

LHS i32.shl ?x i32.const.3

RHS i32.mul ?x i32.const.8

LHS i32.add ?x ?x

RHS i32.mul ?x i32.const.2

As previously mentioned, our work is built on well-
established diversification strategies. In the subsequent
rewriting rules, we exemplify the porting of two well-known
strategies. The leftmost part illustrates the injection of nop

instructions [12]. The rightmost part extend the peephole
meta-rule with the "un-folding" of constants rewriting rule.
In the latter case, statically defined constants are substituted
by the sum of two numbers. This sum computes the original
constant at runtime.

LHS ?x

RHS (nop ?x)

LHS ?x

RHS i32.add (i32.const z i32.

const y)

Cond z = i32 random & y = x - z

The implemented rewriting rules can be employed com-
mutatively. For example, the left-hand side (LHS) can func-
tion interchangeably as the right-hand side (RHS), and the
reverse is also valid. Consequently, observe the doubling of
practical rewriting occurrences. The same logic applies to
numeric types, i.e., some rewriting rules could be duplicated
and then changed to another WebAssembly data type.
3.3. E-graphs for WebAssembly

We build WASM-MUTATE on top of e-graphs [9]. An
e-graph is a graph data structure utilized for representing
rewriting rules and their chaining. In an e-graph, there are
two types of nodes: e-nodes and e-classes. An e-node repre-
sents either an operator or an operand involved in the rewrit-
ing rule, while an e-class denotes the equivalence classes
among e-nodes by grouping them, i.e., an e-class is a virtual

Cabrera-Arteaga et al. Page 6 of 20

right
operand

left
operand

i64.ori64.const 0

e-class

Figure 2: e-graph for idempotent bitwise-or rewriting rule.
Solid lines represent operand-operator relations, and dashed
lines represent equivalent class inclusion.

node compound of a collection of e-nodes. Thus, e-classes
contain at least one e-node. Edges within the graph establish
operator-operand equivalence relations between e-nodes and
e-classes.

In WASM-MUTATE, the e-graph is automatically built
from a WebAssembly program by analyzing its expressions
and operations through its data flow graph. Then, each
unique expression, operator, and operand are transformed
into e-nodes. Based on the input rewriting rules, the equi-
valent expressions are detected, grouping equivalent e-nodes
into e-classes. During the detection of equivalent expres-
sions, new operators could be added to the graph as e-nodes.
Finally, e-nodes within an e-class are connected with edges
to represent their equivalence relationships.

For example, let us consider one program with a sin-
gle instruction that returns an integer constant, i64.const 0.
Let us also assume a single rewriting rule, (x, x i64.or x, x

instanceof i64). In this example, the program’s control flow
graph contains just one node, representing the unique in-
struction. The rewriting rule represents the equivalence for
performing an or operation with two equal operands. Fig-
ure 2 displays the final e-graph data structure constructed
out of this single program and rewriting rule. We start by
adding the unique program instruction i64.const 0 as an e-
node (depicted by the leftmost solid rectangle node in the
figure). Next, we generate e-nodes from the rewriting rule
(the rightmost solid rectangle) by introducing a new e-node,
i64.or, and creating edges to the x e-node. Following this, we
establish equivalence. The rewriting rule combines the two
e-nodes into a single e-class (indicated by the dashed rect-
angle node in the figure). As a result, we update the edges
to point to the x symbol e-class.

Willsey et al. illustrate that the extraction of code frag-
ments from e-graphs can achieve a high level of flexibil-
ity, especially when the extraction process is recursively de-
fined through a cost function applied to e-nodes and their
operands. This approach guarantees the semantic equiva-
lence of the extracted code [50]. For example, to obtain the
smallest code from an e-graph, one could initiate the extrac-

tion process at an e-node and then choose the AST with the
smallest size from among the operands of its associated e-
class [37]. When the cost function is omitted from the ex-
traction methodology, the following property emerges: Any
path traversed through the e-graph will result in a seman-
tically equivalent code variant. This concept is illustrated
in Figure 2, where it is possible to construct an infinite se-
quence of "or" operations. In the current study, we leverage
this inherent flexibility to generate mutated variants of an
original program. The e-graph offers the option for random
traversal, allowing for the random selection of an e-node
within each e-class visited, thereby yielding an equivalent
expression.
Algorithm 1 e-graph traversal algorithm.
1: procedure TRAVERSE(e − grapℎ, eclass, deptℎ)
2: if depth = 0 then
3: return smallest_tree_from(e-graph, eclass)
4: else
5: nodes ← e − grapℎ[eclass]
6: node ← random_cℎoice(nodes)
7: expr ← (node, operands = [])
8: for each cℎild ∈ node.cℎildren do
9: subexpr ← TRAVERSE(e −

grapℎ, cℎild, deptℎ − 1)
10: expr.operands ← expr.operands ∪

{subexpr}
11: return expr

We propose and implement the following algorithm to
randomly traverse an e-graph and generate semantically
equivalent program variants, see 1. It receives an e-graph, an
e-class node (initially the root’s e-class), and the maximum
depth of expression to extract. The depth parameter ensures
that the algorithm is not stuck in an infinite recursion. We
select a random e-node from the e-class (lines 5 and 6), and
the process recursively continues with the children of the se-
lected e-node (line 8) with a decreasing depth. As soon as
the depth becomes zero, the algorithm returns the smallest
expression out of the current e-class (line 3). The subexpres-
sions are composed together (line 10) for each child, and then
the entire expression is returned (line 11). To the best of our
knowledge, WASM-MUTATE, is the first practical implemen-
tation of random e-graph traversal for WebAssembly.

Let us demonstrate how the proposed traversal algorithm
can generate program variants with an example. We will
illustrate Algorithm 1 using a maximum depth of 1. List-
ing 3 presents a hypothetical original WebAssembly binary
to mutate. In this example, the developer has established
two rewriting rules: (x, x i32.or x, x instanceof i32) and (x,

x i32.add 0, x instanceof i32). The first rewriting rule repre-
sents the equivalence of performing an or operation with two
equal operands, while the second rule signifies the equiva-
lence of adding 0 to any numeric value. By employing the
code and the rewriting rules, we can construct the e-graph
depicted in Figure 3. The figure demonstrates the operator-
operand relationship using arrows between the correspond-

Cabrera-Arteaga et al. Page 7 of 20

right
operand

left
operand

i64.or i64.const 1

left
operand

right
operand

i64.add

e-class

i64.const 0

e-class

right
operand

left
operand

i64.or

right
operand

i64.add

left
operand

1

2

3

4
5

6

7

8

Figure 3: e-graph built for rewriting the first instruction of
Listing 3.

ing nodes.
(module

(type (;0;) (func (param i32 f32) (result i64)))

(func (;0;) (type 0) (param i32 f32) (result i64)

i64.const 1)

)

Listing 3: Wasm function.

(module

(type (;0;) (func (param i32 f32) (result i64)))

(func (;0;) (type 0) (param i32 f32) (result i64)

(i64.or (

(i64.add (

i64.const 0

i64.const 1

))

i64.const 1

))

)

Listing 4: Random peephole mutation using egraph traversal
for Listing 3 over e-graph Figure 3. The textual format is
folded for better understanding.

In Figure 3, we annotate the various steps of Algorithm
1 for the scenario described above. Algorithm 1 begins at
the e-class containing the single instruction i64.const 1 from
Listing 3. It then selects an equivalent node in the e-class
2 , in this case, the i64.or node, resulting in: expr = i64.or l

r. The traversal proceedswith the left operand of the selected
node 3 , choosing the i64.add node within the e-class: expr
= i64.or (i64.add l r) r. The left operand of the i64.add node
is the original node 5 : expr = i64.or (i64.add i64.const 1 r

) r. The right operand of the i64.add node belongs to another

e-class, where the node i64.const 0 is selected 6 7 : expr

= i64.or (i64.add i64.const 1 i64.const 0) r. In the final step
8 , the right operand of the i64.or is selected, correspond-
ing to the initial instruction e-node, returning: expr = i64.or

(i64.add i64.const 1 i64.const 0)i64.const 1 The traversal re-
sult applied to the original WebAssembly code can observed
in Listing 4.
3.4. WASM-MUTATE in the loop

In practice, we use WASM-MUTATE as a crucial compo-
nent within a wider process. This process includes an addi-
tional validation and verification of the generated variants. It
starts with a WebAssembly binary as the input and iterates
over the variants created by WASM-MUTATE to offer guar-
antees. These guarantees are ensured through five specific
components: 1) e-graphs traversals by WASM-MUTATE, 2)
a static validation of the variants, 3) a dynamic verification of
the variant’s state after execution by the host engine, 4) the
assessment of different machine code according to the JIT
engine, and 5) the detection of unique execution traces dur-
ing the run. Notice that the composition of these components
minimizes the number of variants that WASM-MUTATE can
generate without functional equivalence, due to the potential
incorrect implementation of the tool. We detail these com-
ponents in Algorithm 2 and discuss them subsequently.

The algorithm starts by executing the original Web-
Assembly program and recording its original state, as in-
dicated in line 5. This initial state serves as a reference
for validating and evaluating subsequent variants. The state
includes 1) the linear memory after the program initializa-
tion (e.g., by invoking the _start function of the initial Web-
Assembly binary if it exists), 2) the value and type of the
global variables, and 3) the standard output of the program.

We start WASM-MUTATE in line 8 of the algorithm, ini-
tiating the loop for finding a new variant. If a variant is gen-
erated, static validation is invoked in line 9. This static val-
idation is performed by the wasmtime parser 2. The static
validation step ensures the stack’s soundness. For instance,
the static validator verifies that a function call does not refer
to a non-existent function index. It also ensures the correct-
ness of the execution stack, i.e., a non-returning block should
leave the stack in the same state as before execution.

Upon successful static validation of a unique variant,
line 11 triggers a JIT compilation within the WebAssembly
engine. This step compiles the variant into machine code.
The algorithm then checks whether this machine code differs
from the original, thus confirming diversity at the machine
code level. If this condition is met, we execute the variant to
collect its state.

Then, the variant’s state is compared to the original state
for dynamic validation. This process is demonstrated in line
14. We perform a fine-grained comparison of the variant’s
globals, linear memory, and output according to a validation
workload. For example, the variant and the original are con-
sidered identical for the linear memory if all bytes are equal
and in the same order. If there is any difference in these

2https://crates.io/crates/wasmparser

Cabrera-Arteaga et al. Page 8 of 20

Algorithm 2WASM-MUTATE in the loop.
1: procedure DIVERSIFY(originalW asm, engine)
2: Input: ⊳ A WebAssembly binary to diversify and a WebAssembly engine.
3: Output: ⊳ A statically unique and behaviourally different WebAssembly variant.
4:
5: originalState ← engine.execute(originalW asm)
6: wasm ← originalW asm
7: while true do
8: variantW asm ← WASM-MUTATE(wasm)
9: if staticValidate(variantW asm) then
10: if variantW asm is unique then
11: variantJIT ← engine.compile(variantW asm)
12: if variantJIT is unique then
13: state ← engine.execute(variantJIT)
14: if state.memory == originalState.memory and
15: state.globals == originalState.globals and
16: state.output == originalState.output then
17: if state.trace ≠ originalState.trace then
18: return variantW asm
19: wasm ← variantW asm // we stack the transformation

state components, the variant is discarded because they are
not equivalent.

The loop ends when a unique variant with new traces
distinct from the original is found, as validated in line 17.
The algorithm then returns the generated variant, ensuring
that both diversified machine code and traces differ from the
original. If this condition is not met, the transformation is
stacked in line 19, and the loop restarts.
3.5. Implementation

WASM-MUTATE is implemented in Rust, comprising ap-
proximately, 10000 lines of Rust code. We leverage the ca-
pabilities of the wasm-tools project of the bytecode alliance
for parsing and transforming WebAssembly binary code.
Specifically, we utilize the wasmparser, https://github.com/
bytecodealliance/wasm-tools/tree/main/crates/wasmparser

and wasm-encoder, https://github.com/bytecodealliance/

wasm-tools/tree/main/crates/wasm-encoder modules for
parsing and encoding WebAssembly binaries, respectively.
The wasmparser crate provides quick, efficient decoding
and parsing of WebAssembly binary files. Its primary
advantage is a minimal memory footprint, achieved without
creating AST or IR of WebAssembly data. Conversely, the
wasm-encoder crate is a reliable library for encoding Wasm
binaries. Additionally, the wasm-encoder crate offers static
validation of the constructed binary, ensuring the integrity
of a newly encoded Wasm binary. The implementation
of WASM-MUTATE is publicly available for future research
and can be found at https://github.com/bytecodealliance/
wasm-tools/tree/main/crates/wasm-mutate.

4. Evaluation
In this section, we outline our methodology for eval-

uating WASM-MUTATE. Initially, we introduce our re-
search questions and the corpus of programs that we uti-

lize for the assessment of WASM-MUTATE. Next, we
elaborate on the methodology for each research question.
For the sake of reproducibility, our data and experiment-
ing pipeline are publicly available at https://github.com/

ASSERT-KTH/tawasco. Our experiments are conducted in Stan-
dard F4s-v2(Skylake) Azure machines with 4 virtual CPUs
and 8GiB memory per instance.
RQ1: To what extent are the program variants gener-

ated by WASM-MUTATE statically different from
the original programs? We check whether the Web-
Assembly binary variants rapidly produced byWASM-
MUTATE are different from the originalWebAssembly
binary. Then, we assess whether the x86 machine
code produced by the wasmtime engine is also differ-
ent.

RQ2: How fast can WASM-MUTATE generate program
variants that exhibit different execution traces? To
assess the versatility of WASM-MUTATE, we also ex-
amine the presence of different behaviors in the gen-
erated variants. Specifically, we measure the speed
at which WASM-MUTATE generates variants with dis-
tinct machine code instruction traces and memory ac-
cess patterns.

RQ3: To what extent doesWASM-MUTATE affect the per-
formance of real-world WebAssembly program
variants? This research question evaluates the perfor-
mance impact of WASM-MUTATE in creating variants
from real-world programs. We compare the machine
code size and the execution time of the original pro-
grams and their variants.

RQ4: To what extent does WASM-MUTATE prevent side-
channel attacks on WebAssembly programs? Di-
versification being an option to prevent security is-

Cabrera-Arteaga et al. Page 9 of 20

Source Programs RQ Mean # Ins. Note

CROW [1] 303 prog. RQ1,
RQ2

8451 Rosetta

wasmbench
[25]

134 prog. RQ3 12665 Real world

Swivel [38] 2 prog. RQ4 297;743 Spectre BTB
Safeside
[38, 22]

2 prog. RQ4 378894;379058 Spectre RSB
& Spectre
PHT

Table 1
Dataset of 441 programs that we use to evaluate WASM-
MUTATE. Each row in the table corresponds to programs,
with the columns providing: where the program is sourced
from, the number of programs, research question addressed,
the mean number of instructions found in the original Web-
Assembly program and, a short note about the programs.

sues, we assess the impact of WASM-MUTATE in pre-
venting one class of attacks: cache attacks (Spectre).

4.1. Corpora
We use a collection of programs comprised of four cu-

rated corpora to address our research questions. Our cor-
pora contains a total of 441 programs (303 + 134 + 2 + 2).
The metadata of these programs is summarized in Table 1.
Each row in the table corresponds to the programs in use for
each research question. The columns provide information on
the following: the corpus source, the number of programs,
the research question addressed, and the mean number of in-
structions for the programs. Additionally, a short note high-
lights the main property of the programs in the last column.
For instance, the notes in the last two rows indicate the at-
tacks to which the programs are susceptible.

We answer RQ1 and RQ2 with a corpus of programs
from Cabrera et.al. [1], which is shown in the first row of
Table 1. The corpus contains 303 programs. The programs
in the corpus perform a range of tasks, from simple ones,
such as sorting, to complex algorithms like a compiler lexer.
The number of total instructions ranges from 170 to 36023
with a mean of 8451 instructions. All programs in the cor-
pus: 1) do not require input from users, i.e., do not functions
like scanf, 2) terminate, 3) are deterministic, i.e., given the
same input, provide the same output and 4) compile to Web-
Assembly using wasi-clang to compile them. The size of the
binaries ranges from 465 to 92114 bytes.

To address RQ3, we evaluate the performance impact of
the WASM-MUTATE variants on 134 real-world programs.
We gather these programs from the wasmbench dataset [25].
The wasmbench dataset consists of 8461 WebAssembly bi-
naries, which were gathered from the internet in 2021. For
our experiment, we need binaries that can execute without
user interaction and that do not rely on external resources
such as complementary JavaScript code. We filter wasm-
bench to retrieve all the binaries with _start functions that
can be executed directly with wasmtime+WASI in less than
60 seconds. This provides us with 134 real-world Web-
Assembly binaries, which can be used to assess the perfor-
mance implications of diversification. As visible in the sec-

RQ1

wasmtime

RQ2 IntelPIN

wasm-mutate

cranelift
compiler

ELF

Ins trace

Mem trace

1 2

4

3

Figure 4: Protocol to answer RQ1 and RQ2

ond row of Table 1, the programs are large, with 12665 in-
structions as the mean value. The size of the binaries ranges
from 113 to 4304430 bytes.

We address RQ4 with four WebAssembly programs and
three Spectre attack scenarios sourcing from the Swivel and
Safeside projects [38, 22]. The specifics of these programs
are revealed in the final two rows of Table 1. The first two
programs, containing 297 and 743 instructions respectively,
are intentionally designed for the Spectre branch target at-
tack (BTB). These programs have 954 and 1910 bytes in size.
The last two programs, presented in the final row, are de-
rived from the Safeside project [22]. Unlike the first pair,
these programs are substantially larger, containing more
than 300000 instructions each and having sizes exceeding
1500000 bytes. They are used to execute the Spectre Return
Stack (RSB) and Spectre Pattern History (PHT) attacks [30].
The significant difference in terms of the number of instruc-
tions and sizes of the first two programs and the last pair is
due to the contrasting compilation processes used for these
WebAssembly binaries. A detailed description of the three
attack scenarios is provided in subsection 4.5.
4.2. Protocol for RQ1

With RQ1, we assess the ability of WASM-MUTATE to
generate WebAssembly binaries that are different from the
original program, including after their compilation to x86
machine code. In Figure 4 we show the steps we follow to
answer RQ1. We run WASM-MUTATE on our corpus of 303
original C programs (step 1 in figure). To generate the
variants: 1) we start with one original and pass it to WASM-
MUTATE to generate a variant; 2) the variant and the origi-
nal program form a population of programs; 3) we randomly
select a program from this population and pass it to WASM-
MUTATE to generate a variant, which we add to the popu-
lation; 4) we then restart the process in the previous step.
to stack more mutations This procedure is carried out for 1
hour. The outcome (step 2 in the figure) is a population
with many stacked transformations, all starting from an orig-

Cabrera-Arteaga et al. Page 10 of 20

inal WebAssembly program. We then count the number of
unique variants in the population. We compute the sha256
hash of each variant bytestream in order and define the pop-
ulation size metric as:
Metric 1. Population_size(P): Given an original Web-
Assembly program P, a generated corpus of WebAssembly
programs V = {v1, v2, ..., vN} where vi is a variant of P,
the population size is defined as:

|set({sℎa256(v1), ...sℎa256(vN)})| ∀vi ∈ V

Since WebAssembly binaries may be further trans-
formed into machine code before they execute, we also
check that these additional transformations preserve the dif-
ference introduced byWASM-MUTATE in theWebAssembly
binary. We use the wasmtime JIT compiler, Cranelift, with
all available optimizations, to generate the x86 binaries for
each WebAssembly program and its variants (step 3 in
figure). Then, we calculate the number of unique variants
of machine code representation for wasmtime. Counting
the number of unique machine codes, we compute the
diversification preservation ratio:

Metric 2. Ratio of preserved variants: Given an original
WebAssembly program P and its population size as defined
in Metric 1 and the JIT compiler C, we defined the ratio of
preserved variants as:

|set({sℎa256(C(v1)), ...sℎa256(C(vN))})|
Population_size (P)

∀vi ∈ V

If sℎa256(P1) ≠ sℎa256(P2) and sℎa256(C(P1))) ≠
sℎa256(C(P2)), this means that both programs are still dif-
ferent after being compiled to machine code, and this means
that the Cranelift compiler has not removed the transforma-
tions made by WASM-MUTATE.

Note that the protocol described earlier can be mapped
to Algorithm 2. For instance, to measure population size for
each tested program, one could measure how often the exe-
cution of Algorithm 2 reaches line 11. Similarly, to assess
the level of preservation, one could track the frequency with
which the algorithm arrives at line 13.
4.3. Protocol for RQ2

For RQ2, we evaluate how fastWASM-MUTATE can gen-
erate variants that offer distinct traces compared with the
original program. We start by collecting the traces of the
original program when executed in wasmtime. While con-
tinuously generating variants with randomly stacked trans-
formations, we collect the execution traces of the variants as
well. We record the time passed until we generate a variant
that offers different execution traces, according to two types
of traces: machine code instructions and memory accesses.
This process can be seen in the enclosed square of Figure 4,
annotated with RQ2.

We gather the instructions and memory traces utilizing
IntelPIN [35, 18] (step 4 in the figure). To only collect

the traces of the WebAssembly execution with a wasmtime
engine, we pause and resume the collection as the execu-
tion leaves and re-enters the WebAssembly code, respec-
tively. We implement this filtering with the built-in hooks
of wasmtime. In addition, we disable ASLR on the machine
where the variants are executed. This latter action ensures
that the placement of the instructions in memory is deter-
ministic. Examples of the traces we collect can be seen in
Listing 5 and Listing 6 for memory and instruction traces,
respectively.

[Writ] 0x555555ed1570 size=4 value=0x10dd0

[Read] 0x555555ed1570 size=4 value=0x10dd0

Listing 5: Memory trace with two events out of
IntelPIN for the execution of aWebAssembly program
with wasmtime. Trace events record: the type of
the operation, read or write, the memory address, the
number of bytes affected and the value read or written.

[I] mov rdx, qword ptr [r14+0x100]

[I] mov dword ptr [rdx+0xe64], ecx

Listing 6: Instructions trace with two events out of
IntelPIN for the execution of aWebAssembly program
with wasmtime. Each event records the corresponding
machine code that executes.
In the text below, we outline the metric used to assess

how fast WASM-MUTATE can generate variants that provide
different execution traces.
Metric 3. Time until different trace: Given an original
WebAssembly program P, and its execution trace T1,
the time until a different trace is defined as the time
between the diversification process starts and when the
variant V is generated with execution trace T2 with T1 ≠ T2.

Notice that the previously defined metric is instantiated
twice, for instructions and memory type of events.

Referring to Algorithm 2, we quantify the elapsed time
between line 6 and line 16 to obtain the time it takes for
WASM-MUTATE to generate a unique WebAssembly variant
producing different execution traces.
4.4. Protocol for RQ3

We evaluate the performance implications of using
WASM-MUTATE to generate variants. To do this, we use
programs from previous work [25]. We collect the subset
of 134 real-world programs that can be executed with no in-
put and no user interaction. For each program in the corpus,
we generate a maximum of 50 unique variants, with every
variant comprising 1000 stacked transformations. The per-
formance of these variants is determined by measuring both
the binary size of the compiled program and the execution
time for each program and its corresponding variants. For
binary size, we collect the binary size after native code com-
pilation by wasmtime. In total, we measure these parameters

Cabrera-Arteaga et al. Page 11 of 20

across a set of 6834 (134 + 134 × 50) programs. To com-
pare all programs and their variants, we apply the following
relative metrics:
Metric 4. Relative Machine Code size impact: Given an
original WebAssembly program P and a variant V, given MP
and MV the machine code for P and V respectively, the rel-
ative machine code size is defined as:

|MV |
|MP |

Here, the | | function returns the byte size of an input
binary.

Finally, we execute each program and variant and mea-
sure their execution time. We then compare the execution
time of variants for its original program execution time.
Metric 5. Relative execution time: Given a program P and
a variant V, the relative execution time is defined as:

init(V)
init(P)

initmeasures the time of executing the _start function of
an already JITed WebAssembly binary.

We collectMetric 5 after running each program and vari-
ant 100 times. We discard the first 20 measurements to re-
move noise and warm up the JIT engine. Thus, for each pro-
gram and variant, we collect 80 execution times.
4.5. Protocol for RQ4

To answer RQ4, we apply WASM-MUTATE to the same
security WebAssembly programs used by Narayan et al. to
evaluate Swivel’s ability to protect WebAssembly programs
against side-channel attacks [38]. The four cache timing
side-channel attacks are presented in detail in subsection 4.1.
The specific binary and its corresponding attack can be ap-
preciated in Table 1. We evaluate to what extent WASM-
MUTATE can prevent such attacks. In the following text, we
describe the attacks we replicate and evaluate in order to an-
swer RQ4.

Narayan and colleagues successfully bypass the control
flow integrity safeguards, using speculative code execution
as detailed in [30]. Thus, we use the same three Spectre
attacks from Swivel: 1) The Spectre Branch Target Buffer
(btb) attack exploits the branch target buffer by predicting
the target of an indirect jump, thereby rerouting speculative
control flow to an arbitrary target. 2) The Spectre Pattern
History Table (pht) takes advantage of the pattern history ta-
ble to anticipate the direction of a conditional branch during
the ongoing evaluation of a condition. 3) The Spectre Return
Stack Buffer (ret2spec) attack exploits the return stack buffer
that stores the locations of recently executed call instructions
to predict the target of ret instructions. Each attack method-
ology relies on the extraction of memory bytes from another
hosted WebAssembly binary that executes in parallel.

For each of the four WebAssembly binaries introduced
in subsection 4.1, we generated a maximum of 1000 random

10000 20000 30000 40000 50000

Population size

0

5

10

P
er

ce
n
ta

ge
of

p
ro

gr
am

s

Figure 5: RQ1: Number of unique WebAssembly programs
generated by WASM-MUTATE in 1 hour for each program of
the corpus.

stacked transformations utilizing 100 distinct seeds. This re-
sulted in a total of 100,000 variants for each original Web-
Assembly binary. We then assess the success rate of attacks
across these variants by measuring the bandwidth of the ex-
filtrated data, that is: the rate of correctly leaked bytes per
unit of time. We then count the correctly exfiltrated bytes
and divided them by the variant program’s execution time.

Notice that, the bandwidth metric captures not only
whether the attacks are successful or not, but also the de-
gree to which the data exfiltration is hindered. For instance,
a variant that continues to exfiltrate secret data but does so
over an impractical duration would be deemed as having
been hardened. For this, we state the bandwidth metric in
the following definition :
Metric 6. Attack bandwidth: Given data D =
{b0, b1, ..., bC} being exfiltrated in time T and
K = k1, k2, ..., kN the collection of correct data bytes, the
bandwidth metric is defined as:

|bi such that bi ∈ K|
T

5. Experimental Results
5.1. To what extent are the program variants

generated byWASM-MUTATE statically
different from the original programs?

To address RQ1, we utilize WASM-MUTATE to process
the original 303 programs from [1]. WASM-MUTATE is set
to generate variants with a timeout of one hour for each pro-
gram. Following this, we assess the sizes of their variant
populations as well as their corresponding preservation ra-
tio (Refer to Metric 1 and Metric 2 for more details).

In Figure 5, we show the distribution of the population
size generated out of WASM-MUTATE. WASM-MUTATE
successfully diversifies all 303 original programs, yielding
a diversification rate of 100%. Within an hour, WASM-
MUTATE demonstrates its impressive efficiency and effec-
tiveness by producing a median of 9500 unique variants for
the 303 original programs. The largest population size ob-
served is 53816, while the smallest is 5716. There are several
factors contributing to large population sizes.

Cabrera-Arteaga et al. Page 12 of 20

30 40 50 60 70

Preservation percentage

0

2

4

6

P
er

ce
n
ta

ge
of

p
ro

gr
am

p
op

u
la

ti
on

s Preservation distribution

Figure 6: RQ1: Distribution of the ratio of wasmtime pre-
served variants.

WASM-MUTATE can diversify functions within WASI-
libc. Despite the relatively low function count in the original
source code, WASM-MUTATE creates thousands of distinct
variants in the function of the incorporated libraries. This
feature improves over methods that can only diversify the
original source code processed through the LLVM compila-
tion pipeline [1].

We have observed a significant variation in the popu-
lation size out of WASM-MUTATE between different pro-
grams, ranging by several thousand variants (from a max-
imum of 53816 variants to a minimum of 5716 variants).
This disparity is attributed to: the non-deterministic nature
ofWASM-MUTATE and 2) the characteristics of the program.
WASM-MUTATE mutates a randomly selected portion of a
program. If the selected instruction is determined to be non-
deterministic, despite the transformation being semantically
equivalent, WASM-MUTATE discards the variant and moves
on to another random transformation. For instance, if the
instruction targeted for mutation is a function call, WASM-
MUTATE proceeds to the next one. This process, in conjunc-
tion with the unique characteristics of each program, results
in a varying population size. For example, an input binary
with a high number of function calls would lead to a greater
number of trials and errors, slowing down the generation
of variants, thereby resulting in a smaller overall population
size for 1 hour of WASM-MUTATE execution.

As stated in subsection 4.2, we also assess static diver-
sification with Metric 2 by calculating the preservation ra-
tio of variant populations. Figure 6 presents the distribution
of preservation ratios for the Cranelift compiler of wasm-
time. We have observed a median preservation ratio of 62%.
On the one hand, we have observed that there is no correla-
tion between population size and preservation ratio. In other
words, having a larger population size does not necessar-
ily lead to a higher preservation ratio. On the other hand,
the phenomena of non-preserved variants can be explained
as follows. Factors such as custom sections are often disre-
garded by compilers. Similarly, bloated code plays a role in
this context. For instance, WASM-MUTATE generates cer-
tain variants with unused types or functions, which are then
detected and eliminated by Cranelift. Yet, note that even
when working with the smallest population size and the low-
est preservation percentage, the number of unique machine

0.0 0.5 1.0 1.5 2.0 2.5

Time in mins

0.00

0.25

0.50

0.75

1.00

C
u

m
u

la
ti

ve
d

is
tr

ib
u

ti
on

Until diff. instruction

Until diff. mem access

Figure 7: RQ2: Cumulative distribution for the time until
different trace. In blue for different machine code instructions,
in green for different memory traces. The X-axis marks time in
minutes, and the Y-axis shows the ratio of programs from 303
for which WASM-MUTATE created a variant within that time.

codes can still encompass thousands of variants.
Answer to RQ1: WASM-MUTATE generates Web-
Assembly variants for all the 303 input programs.
Within a one-hour diversification budget, WASM-
MUTATE synthesizes more than 9000 unique variants
per program on average. 62% of the variants re-
main different after machine-code compilation. WASM-
MUTATE is good at producing manyWebAssembly pro-
gram variants.

5.2. How fast can WASM-MUTATE generate
program variants that exhibit different
execution traces?

To answer question RQ2, we measure how long it takes
to generate one variant that exhibits execution traces that
are different from the original. In Figure 7, we display a
cumulative distribution plot showing the time required for
WASM-MUTATE to generate variants with different traces,
in blue for machine code instructions and green for mem-
ory traces. The X-axis marks time in minutes, and the Y-
axis shows the ratio of programs from 303 for whichWASM-
MUTATE created a variant within that time. For all original
programs, WASM-MUTATE succeeds in generating one vari-
ant with different traces compared to the original program,
either in machine code instructions or memory access, i.e.,
both cumulative distributions reach 100% The shortest time
to generate a variant with different machine code instruction
traces is 0.12 seconds, and for different memory traces, it
is 0.06 seconds. In the slowest scenarios, WASM-MUTATE
takes under 1 minute for different machine code instruction
traces and less than 3 minutes for different memory traces.
Overall, WASM-MUTATE takes a median of 5.4 seconds and
12.6 seconds in generating variants with different machine
code instructions and different memory instructions respec-
tively.

The use of an e-graph random traversal is the key factor
for such a fast generation process. Once WASM-MUTATE
locates a modifiable instruction within the binary and con-

Cabrera-Arteaga et al. Page 13 of 20

structs its corresponding e-graph, traversal is virtually in-
stantaneous. However, the time efficiency of variant gener-
ation is not consistent across all programs, as illustrated in
Figure 7. This variation primarily stems from the varying
complexities of the programs under analysis, as previously
mentioned in subsection 5.1. Interestingly, WASM-MUTATE
may attempt to build e-graphs from instructions that, while
not inherently leading to undefined behavior, are part of a
data flow graph that could. For example, the data flow graph
might be dependent on a function call. Although transform-
ing undefined behavioral instructions is deactivated by de-
fault in WASM-MUTATE to maintain functional equivalence
with the original code, the process of attempting to construct
such e-graphs can extend the duration of the diversification
pass. As a result, WASM-MUTATE may require multiple at-
tempts to successfully create and traverse an e-graph, im-
pacting the rate at which it generates behaviorally distinct
variants. This phenomenon is particularly noticeable in orig-
inal programs that have a high frequency of function calls.

On average, WASM-MUTATE takes three times longer
to synthesize unique memory traces than it does to gener-
ate different instruction traces (as can be observed in how
the green plot of the figure is skewed to the right). The
main reason for this difference is the limited set of rewriting
rules that specifically focus on memory operations. WASM-
MUTATE includes more rules for manipulating code, which
increases the odds of generating a variant with diverse ma-
chine code instructions. Additionally, the variant creation
process halts and restarts with alternative rewriting rules if
WASM-MUTATE detects that the selected code for transfor-
mation could result in unpredictable behavior.

We have identified four primary factors explaining why
execution traces differ overall. First, alterations to the bi-
nary layout inherently impact both machine code instruction
traces and memory accesses within the program’s stack. In
particular, WASM-MUTATE creates variants that change the
return addresses of functions, leading to divergent execution
traces, including those related to memory access. Second,
our rewriting rules incorporate artificial global values into
WebAssembly binaries. Since these global variables are in-
herently manipulated via the stack, their access inevitably
generates divergent memory traces. Third, WASM-MUTATE
injects ’phantom’ instructions which do not aim to mod-
ify the outcome of a transformed function during execution.
These intermediate calculations trigger the spill/reload com-
ponent of the runtime, varying spill and reload operations. In
the context of limited physical resources, these operations
temporarily store values in memory for later retrieval and
use, thus creating unique memory traces. Finally, certain
rewriting rules implemented by WASM-MUTATE replicate
fragments of code, e.g., performing commutative operations.
These code segments may contain memory accesses, and
while neither the memory addresses nor their values change,
the frequency of these operations does. Overall, these find-
ings influence the diversity of execution traces among the
generated variants.

11 2 3
0

200

400

V
ar

ia
n
ts

co
u

n
t

Relative machine code
size distribution

Figure 8: Distribution of the relative machine code size. The
Y-axis represents the count of variants, while the X-axis repre-
sents the relative size of the variants, in the number of machine
code bytes. WASM-MUTATE generates WebAssembly variants
that exhibit a broad range of binary sizes.

Answer to RQ2: WASM-MUTATE generates variants
with distinct machine code instructions and memory
traces for all tested programs. The quickest time for
generating a variant with a unique machine code trace
is 0.12 seconds, and for divergent memory traces, the
fastest generation only lasts 0.06 seconds. On aver-
age, the median time required to produce a variant with
distinct traces stands at 5.4 seconds for different ma-
chine code traces and 16.2 seconds for different mem-
ory traces. These metrics indicate that WASM-MUTATE
is suitable for fast-moving target defense strategies, ca-
pable of generating a new variant in well under a minute
[7]. To the best of our knowledge, WASM-MUTATE is
the fastest diversification engine for WebAssembly.

5.3. To what extent does WASM-MUTATE affect the
performance of real-world WebAssembly
program variants?

To answer RQ3, we generate variants for 134 real-world
programs selected from the wasmbench dataset [25]. We
produce 50 variants for each original program and execute
them along with the original program, for a total of (50 +
1) × 134 variants. We collect the machine code size after
the WebAssembly program is JITed by wasmtime and the
execution time of each original program/variant.

In Figure 8, we plot the relative machine code size distri-
bution. TheY-axis represents the count of variants, while the
X-axis represents the relative value of the relative machine
code size. The median relative machine code size is 1.6.
The size of the generated machine has a maximum increase
of 4.8 times the original size. Overall, the wasmtime com-
piler yields a diverse range of machine code sizes. The larger
size of the produced machine code could potentially affect
the distribution of programs across the network. Therefore,
practitioners may opt to distribute only those variants that
only have a small increase in binary size when bandwidth
presents a significant concern. Also, we highlight that 2% of
the generated variants result in a smaller machine code size,
showing that our diversification engine also optimizes.

Cabrera-Arteaga et al. Page 14 of 20

11
0

100

200

300

400

V
ar

ia
n
ts

co
u

n
t

Relative execution
time distribution

Figure 9: Distribution of relative execution times for variants
produced by WASM-MUTATE. The Y-axis represents the count
of variants, while the X-axis represents the relative execution
times of the variants. Relative execution times display a normal
distribution, 29% of the variants are faster while 70% operate
slower.

In Figure 9 we show the distribution of relative execu-
tion times for variants produced by WASM-MUTATE. The
Y-axis represents the count of variants, while the X-axis
represents the relative value of the relative execution time
size. The median relative execution time is 1.1. Overall,
we observe a Gaussian-like shape. We note that 29% of the
variants perform faster than the original, in contrast to 70%
that are slightly slower. In the worst-case scenario, WASM-
MUTATE produces variants that perform twice as slowly as
the original. On the other hand, in the best-case scenario,
WASM-MUTATE produces variants that are five times faster
than the original. We have identified two primary reasons
for the minimal impact of WASM-MUTATE on variant exe-
cution times. First, WASM-MUTATE generates variants by
injecting phantom code which, in practice, is not executed.
This impacts the machine code size, but not the execution
time. Second, WASM-MUTATE produces variants by opti-
mizing the original programs, in particular, due to peep-hole
diversification techniques. This allows for the generation of
faster variants through the stacking of optimizations during
the e-graph traversal by WASM-MUTATE.
Answer to RQ3: WASM-MUTATE generates Web-
Assembly variants that tend to be larger than the original
program. Execution times for WASM-MUTATE variants
display a normal distribution close to the original per-
formance. In general, the impact ofWASM-MUTATE re-
mainswithin the same order ofmagnitudewith amedian
value of 1.1 in the original execution time. The diversi-
fication workflow of WASM-MUTATE can be expanded
by practitioners to filter out extreme variants, such as the
ones that are too big or too slow.

5.4. To what extent does WASM-MUTATE prevent
side-channel attacks on WebAssembly
programs?

To answer RQ4, we execute WASM-MUTATE on four
distinct binaries WebAssembly susceptible to Spectre-
related attacks. Each of the four programs is transformed

with one of 100 different seeds and up to 1000 stacked trans-
formations. We assess the resulting impact of the attacks
as outlined in 4.5. The analysis encompasses a total of
4×100×1000 binaries, which also includes the original four.

Figure 10 offers a graphical representation of WASM-
MUTATE’s influence on the Swivel original programs and
their attacks. Each plot corresponds to one original Web-
Assembly binary and the attack it undergoes: btb_breakout,
btb_leakage, ret2spec, and pht. The Y-axis represents the
exfiltration bandwidth (see Metric 6). The bandwidth of the
original binary under attack is marked as a blue dashed hori-
zontal line. In each plot, the variants are grouped in clusters
of 100 stacked transformations. These are indicated by green
dots and lines. The dot signifies the median bandwidth for
the cluster, while the line represents the interquartile range
of the group’s bandwidth.

For btb_breakout and btb_leakage, WASM-MUTATE
demonstrates effectiveness, generating variants that leak less
information than the original in 78% and 70% of the cases,
respectively. For these particular binaries, a significant re-
duction in exfiltration bandwidth to zero is noted after 200
stacked transformations. This means that with a minimum
of 200 stacked transformations, WASM-MUTATE can cre-
ate variants that are completely resistant to the original at-
tack. For the ret2spec and pht scenarios, the produced vari-
ants consistently exhibit lower bandwidth than the original
in 76% and 71% of instances, respectively. As depicted in
the plots, the exfiltration bandwidth diminishes following
the application of at least 100 stacked transformations.

This success is explained by the fact that WASM-
MUTATE synthesizes variants that effectively alter mem-
ory access patterns. Specifically, it does so by amplifying
spill/reload operations, injecting artificial global variables,
and changing the frequency of pre-existing memory ac-
cesses. These transformations influence the WebAssembly
program’s memory, disrupting cache predictors.

Many attacks rely on a timer component to measure
cache access time for memory, and disrupting this com-
ponent effectively impairs the attack’s effectiveness. This
strategy of dynamic alteration has also been employed in
other scenarios. For instance, to counter potential timing at-
tacks, Firefox randomizes its built-in JavaScript timer [44].
WASM-MUTATE applies the same strategy by interspersing
instructions within the timing steps of WebAssembly vari-
ants. In Listing 7 and Listing 8, we demonstrate WASM-
MUTATE’s impact on time measurements. The former il-
lustrates the original time measurement, while the latter
presents a variant with WASM-MUTATE-inserted operations
amid the timing.

Cabrera-Arteaga et al. Page 15 of 20

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.0

0.2

0.4

0.6

B
a
n

d
w

id
th

(b
/s

)

btb breakout

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0

10

20

30

B
a
n

d
w

id
th

(b
/s

)

btb leakage

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.00

0.01

0.02

0.03

B
a
n

d
w

id
th

(b
/s

)

ret2spec

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

40
0-

50
0

50
0-

60
0

60
0-

70
0

70
0-

80
0

80
0-

90
0

90
0-

10
00

Stacked transformations

0.0

0.5

1.0

B
a
n

d
w

id
th

(b
/s

)

pht

Figure 10: Visual representation of WASM-MUTATE’s impact on Swivel’s original programs. The Y-axis denotes exfiltration
bandwidth, with the original binary’s bandwidth under attack highlighted by a blue marker and dashed line. Variants are clustered
in groups of 100 stacked transformations, denoted by green dots (median bandwidth) and lines (interquartile bandwidth range).
Overall, for all 100000 variants generated out of each original program, 70% have less data leakage bandwidth.

;; Code from original btb_breakout

...

(call $readTimer)

(set_local $end_time)

... access to mem

(i64.sub (get_local $end_time) (get_local $start_time))

(set_local $duration)

...

Listing 7: Wasm timer used in btb_breakout program.

;; Variant code

...

(call $readTimer)

(set_local $end_time)

<inserted instructions>

... access to mem

<inserted instructions>

(i64.sub (get_local $end_time) (get_local $start_time))

(set_local $duration)

...

Listing 8: Variant of btb_breakout with more
instructions added in between time measurement.
WASM-MUTATE proves effective against cache access

timers because the time measurement of a single or a few
instructions is inherently different. By introducing more in-
structions, this randomness is amplified, thereby reducing
the timer’s accuracy.

Furthermore, CPUs have a maximum capacity for the
number of instructions they can cache. WASM-MUTATE in-
jects instructions in such a way that the vulnerable instruc-
tion may exceed this cacheable instruction limit, meaning
that caching becomes disabled. This kind of transformation
can be viewed as padding [17]. In Listing 9 and Listing 10,
we illustrate the effect of WASM-MUTATE on padding in-
structions. Listing 9 presents the original code used for train-
ing the branch predictor, along with the expected speculated
code.

;; Code from original btb_breakout

...

;; train the code to jump here (index 1)

(i32.load (i32.const 2000))

(i32.store (i32.const 83)) ;; just prevent optimization

...

;; transiently jump here

(i32.load (i32.const 339968)) ;; S(83) is the secret

(i32.store (i32.const 83)) ;; just prevent optimization

Listing 9: Two jump locations in btb_breakout. The
top one trains the branch predictor, the bottom one is
the expected jump that exfiltrates the memory access.

;; Variant code

...

;; train the code to jump here (index 1)

<inserted instructions>

(i32.load (i32.const 2000))

<inserted instructions>

(i32.store (i32.const 83)) ;; just prevent optimization

...

;; transiently jump here

<inserted instructions>

(i32.load (i32.const 339968)) ;; "S"(83) is the secret

<inserted instructions>

(i32.store (i32.const 83)) ;; just prevent optimization

...

Listing 10: Variant of btb_breakout with more
instructions added indindinctly between jump places.
The padding alters the arrangement of the binary code in

memory, effectively impeding the attacker’s capacity to ini-
tiate speculative execution. Even when an attack is launched
and the vulnerable code is "speculated", the memory access
is not impacted as planned.

In every program, we note that the exfiltration bandwidth
tends to be greater than the original when the variants in-
clude a few transformations. This indicates that, although
the transformations generally contribute to the reduction of
data leakage, the initial fewmight not consistently contribute
positively towards this objective. We have identified several
fundamental reasons, which we discuss below.

First, as emphasized in prior applications of WASM-
MUTATE [8], uncontrolled diversification can be counterpro-

Cabrera-Arteaga et al. Page 16 of 20

ductive if a specific objective, such as a cost function, is not
established at the beginning of the diversification process.
Secondly, while some transformations yield distinct Web-
Assembly binaries, their compilation produces identical ma-
chine code. Transformations that are not preserved under-
mine the effectiveness of diversification. For example, incor-
porating random nop operations directly into WebAssembly
does not modify the final machine code as the nop opera-
tions are often removed by the compiler. The same phe-
nomenon is observed with transformations to custom sec-
tions of WebAssembly binaries. Additionally, it is impor-
tant to note that transformed code doesn’t always execute,
i.e., WASM-MUTATE may generate dead code.

Finally, for ret2spec and pht, both programs are hardened
with attack bandwidth reduction, but this does not material-
ize in a short-term timeframe (low count of stacked transfor-
mations). Furthermore, the exfiltration bandwidth is more
dispersed for these two programs. Our analysis indicates a
correlation between bandwidth reduction and the complex-
ity of the binary subject to diversification. Ret2spec and pht
are considerably larger than btb_breakout and btb_leakage.
The former comprises more than 300k instructions, while
the latter two include fewer than 800 instructions. Given
that WASM-MUTATE applies precise, fine-grained transfor-
mations one at a time, the likelihood of impacting critical
attack components, such as timing memory accesses, dimin-
ishes for larger binaries, particularly when limited to 1,000
transformations. Based on these observations, we believe
that a greater number of stacked transformations would fur-
ther contribute to eventually eliminating the attacks associ-
ated with ret2spec and pht.
Answer to RQ4: Software diversification is effective
at synthesizing WebAssembly binaries that mitigate
Spectre-like attacks. WASM-MUTATE generates vari-
ants of btb_breakout and btb_leakage that are protected
against the considered attack. For ret2spec and pht, it
generates hardened variants that are more resilient to
the attack than the original program: 70% of the diver-
sified variants exhibit reduced attack effectiveness (re-
duced data leakage bandwidth) compared to the original
program.

6. Discussion
Fuzzing WebAssembly compilers with WASM-

MUTATE In fuzzing campaigns, generating well-formed
inputs is a significant challenge [48]. This is particularly
true for fuzzing compilers, where the inputs should be
executable yet complex enough programs to probe various
compiler components. WASM-MUTATE could address this
challenge by generating semantically equivalent variants
from an original WebAssembly binary, enhancing the scope
and efficiency of the fuzzing process. A practical example
of this occurred in 2021, when this approach led to the
discovery of a wasmtime security CVE [20]. Through the
creation of semantically equivalent variants, the spill/reload

component of Cranelift was stressed, resulting in the
discovery of the before-mentioned CVE.

Mitigating Port Contention with WASM-MUTATE:
Rokicki et al. [41] showed the practicality of a covert side-
channel attack using port contention within WebAssembly
code in the browser. This attack fundamentally relies on the
precise prediction of WebAssembly instructions that trigger
port contention. To combat this security concern, WASM-
MUTATE could be conveniently implemented as a browser
plugin. WASM-MUTATE can replace the WebAssembly in-
structions used as port contention predictor with other in-
structions. This would inevitably remove the port contention
in the specific port used to conduct the attack, hardening
browsers against such attacks.

Threats to validity: We have observed several threats
to validity related to WASM-MUTATE. First, the size of the
variants, as demonstrated in the response to RQ3, is gener-
ally larger than the original. This results in the potential for
increased compilation time, cold spawn, and memory usage
by the machine code. Second, the rewriting rules of WASM-
MUTATE are not easily extendable, except for manual ad-
dition and subsequent recompilation of the tool. Third, the
mutation backtracking of WASM-MUTATE does not account
for the state of the mutation, i.e., WASM-MUTATE does not
retain parsing information, the CFG, or the data flow graph
for a previously observed binary. This leads to the need to
parse the same binary each timeWASM-MUTATE conducts a
transformation, which, as discussed in the response to RQ1,
slightly affects the number of generated variants. Fourth,
the preservation of variants, as indicated in RQ1, is com-
paratively low concerning other diversification tools such as
CROW [1]. This is primarily because rewriting rules are
manually crafted. Unlike the transformations that CROW
can generate, these can be more easily removed by compiler
optimizations. Fifth, WASM-MUTATE and the tools upon
which we built it may contain bugs. For instance, the con-
struction of the e-graphs heavily depends on the parsing of
the Wasm binaries, which in turn relies on multiple other li-
braries. However, to promote the auditing of our work and
for the sake of open science, we have made the code freely
available.

7. Related Work
Static software diversification refers to the process of

synthesizing, and distributing unique but functionally equi-
valent programs to end users. The implementation of this
process can take place at any stage of software development
and deployment - from the inception of source code, through
the compilation phase, to the execution of the final binary
[26, 36]. WASM-MUTATE, a static diversifier, can be placed
at the final stage, keeping in mind that the code will sub-
sequently undergo final compilation by JIT compilers. The
concept of software diversification owes much to the pio-
neering work of Cohen [13]. His suite of code transforma-
tions aimed to increase complexity and thereby enhance the
difficulty of executing a successful attack against a broad
user base [13]. WASM-MUTATE’s rewriting rules draw sig-

Cabrera-Arteaga et al. Page 17 of 20

nificantly from Cohen and Forrest’s seminal contributions
[13, 21].

As far as we know, Tigress is the only cutting-edge fron-
tend diversifying virtualizer/obfuscator that supports Web-
Assembly [14]. Tigress’s approach transforms the C code,
maintaining it suitable for compilation using Emscripten,
a C-to-Wasm compiler, resulting in a WebAssembly/htm-
l/Javascript package. In general, applying diversification
at the frontend has limitations. First, it would require a
unique diversification mechanism for each language com-
patible with the frontend component. Even though C/C++
code is the most frequently ported-to WebAssembly lan-
guage [25], our needs involve modifying any Wasm in ex-
istence. Second, source-based diversification tends to alter
the code section of the final WebAssembly binary more sig-
nificantly. As a result, other sections of the WebAssembly
binaries receive less attention, or even remain untouched,
during the diversification process. Yet, WASM-MUTATE,
can modify any section of any WebAssembly binary in exis-
tence. Third, source code diversification could unintention-
ally introduce compiler fingerprints into the compiled Web-
Assembly [8].

Jackson and colleagues proposed the pivotal role of the
compiler in promoting static software diversification [26].
Within the WebAssembly context, CROW is the only ex-
isting compiler-based diversifier [1]. It is recognized as a
superdiversifier for WebAssembly, built within the LLVM
compilation toolchain [27]. However, the direct integration
of the diversifier into the LLVM compiler restricts its appli-
cability toWebAssembly binaries generated through LLVM.
This limitation implies thatWebAssembly source code with-
out an LLVM frontend implementation cannot leverage
CROW’s capabilities. Conversely, WASM-MUTATE pro-
vides a more adaptable and expedited WebAssembly to
WebAssembly diversification solution, ensuring compatibil-
ity with any compiler. Additionally, unlike CROW, WASM-
MUTATE does not depend on an SMT solver to validate the
generated variants. It instead guarantees semantic equiva-
lence by design, leading to increased efficiency in generat-
ing WebAssembly variants, as discussed in subsection 5.1.
Consequently, CROW seems to provide variants that are
more resilient to further compiler optimizations. WASM-
MUTATE trades off the preservation of generated variants to
create more variants. According to CROW reports, WASM-
MUTATE generates more variants by at least one order of
magnitude in the same amount of time. Overall, as a
WebAssembly toWebAssembly diversification tool,WASM-
MUTATE extends the range of tools capable of generating
WebAssembly programs, a topic thoroughly explored in this
work.

The process of diversifying a WebAssembly program
can be conceptualized as a three-stage procedure: parsing
the program, transforming it, and finally re-encoding it back
into WebAssembly. Our review of the literature has re-
vealed several studies that have employed parsing and en-
coding components for WebAssembly binaries across vari-
ous domains. This indicates that these works accept a Web-

Assembly binary as an input and output a unique Web-
Assembly binary. These domains span optimization [49],
control flow [3], and dynamic analysis [33, 45, 3, 4]. When
the transformation stage introduces randomizedmutations to
the original program, the aforementioned tools could poten-
tially be construed as diversifiers. WASM-MUTATE is related
to these previous works, as it can serve as an optimizer or a
test case reducer due to the incorporation of an e-graph at
the heart of its diversification process [46]. To the best of
our knowledge, the introduction of an e-graph into WASM-
MUTATEmarks the first endeavor to integrate an e-graph into
a WebAssembly to WebAssembly analysis tool.

BREWasm [10] offers a comprehensive static binary
rewriting framework for WebAssembly and can be consid-
ered to be the most similar toWASM-MUTATE. For instance,
it can be used to model a diversification engine. It parses a
WebAssembly binary into objects, rewrites them using fine-
grained APIs, integrates these APIs to provide high-level
ones, and re-encodes the updated objects back into a valid
WebAssembly binary. The effectiveness and efficiency of
BREWasm have been demonstrated through various Web-
Assembly applications and case studies on code obfuscation,
software testing, program repair, and software optimization.
The implementation of BREWasm follows a completely dif-
ferent technical approach. In comparison with our work,
the authors pointed out that our tool employs lazy parsing
of WebAssembly. Although they perceived this as a limita-
tion, it is eagerly implemented to accelerate the generation of
WebAssembly binaries. Additionally, our tool leverages the
parser and encoder of wasmtime, a standalone compiler and
interpreter for WebAssembly, thereby boosting its reliability
and lowering its error-prone nature.

Another similar work to WASM-MUTATE is WASMixer
[11]. WASMixer focuses on three code obfuscation meth-
ods for WebAssembly binaries: memory access encryption,
control flow flattening, and the insertion of opaque predi-
cates. Their strategy is specifically designed for obfuscating
WebAssembly binaries. In contrast, while WASM-MUTATE
does not employ memory access encryption or control flow
flattening, it can still function effectively as an obfuscator.
Previous evaluations confirm that WASM-MUTATE has been
successful in evading malware detection [8]. On the same
topic, Madvex [34] also aims to modifyWebAssembly bina-
ries to achieve malware evasion, but their approach is princi-
pally driven by a generic reward function and is largely con-
fined to altering only the code section of a WebAssembly
binary. WASM-MUTATE, however, adopts a more flexi-
ble strategy by applying a broader array of transformations,
which are not limited to the code section. Consequently,
WASM-MUTATE is capable of generating malware variants
without negatively affecting their code or performance.

8. Conclusion
WASM-MUTATE is a fast and effective diversification

tool for WebAssembly, with a 100% diversification rate
across the 303 programs of the considered benchmark. Con-

Cabrera-Arteaga et al. Page 18 of 20

cerning speed, it creates over 9000 unique variants per hour.
The WASM-MUTATE workflow ensures that all final vari-
ants offer different and unique execution traces. Remarkably,
WASM-MUTATE creates variants that have a minimal impact
on execution time. We have proven thatWASM-MUTATE can
mitigate Spectre attacks in WebAssembly, producing fully
protected variants of two versions of the btb attack, and vari-
ants of ret2spec and pht that leak less data than the original
ones.

In future work, we aim to fine-tune the diversification
process, balancing broad diversification with the needs of
specific scenarios. Besides, the creation of rewriting rules
for WASM-MUTATE is currently a manual task, yet we have
identified potential for automation. For instance, WASM-
MUTATE could be enhanced through data-driven methods
such as rule mining. Furthermore, we have observed that
the impact of WASM-MUTATE on ret2spec and pht attacks
is considerably less compared to btb attacks. These at-
tacks exploit the returning address of executed functions in
the program stack. One mitigation of this would be multi-
variant execution strategy, implemented on top of WASM-
MUTATE. By offering different execution paths, the return-
ing addresses on the stack at each function execution would
vary, thereby improving the hardening of binaries against
ret2spec attacks.

References
[1] Arteaga, J.C., Malivitsis, O.F., Pérez, O.L.V., Baudry, B., Monperrus,

M., 2021. Crow: Code diversification for webassembly, in: Proceed-
ings of MadWEB. doi:10.14722/madweb.2021.23xxx.

[2] Azad, B.A., Laperdrix, P., Nikiforakis, N., 2019. Less is more:
Quantifying the security benefits of debloating web applications, in:
28th USENIX Security Symposium (USENIX Security 19), USENIX
Association, Santa Clara, CA. pp. 1697–1714. URL: https://www.
usenix.org/conference/usenixsecurity19/presentation/azad.

[3] Breitfelder, F., Roth, T., Baumgärtner, L., Mezini, M., 2023. Wasma:
A static webassembly analysis framework for everyone, in: 2023
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 753–757. doi:10.1109/SANER56733.2023.
00085.

[4] Brito, T., Lopes, P., Santos, N., Santos, J.F., 2022. Wasmati: An effi-
cient static vulnerability scanner for webassembly. Computers & Se-
curity 118, 102745. URL: https://www.sciencedirect.com/science/
article/pii/S0167404822001407, doi:https://doi.org/10.1016/j.cose.
2022.102745.

[5] Bruschi, D., Cavallaro, L., Lanzi, A., 2007. Diversified process
replicæ for defeating memory error exploits, in: 2007 IEEE Inter-
national Performance, Computing, and Communications Conference,
pp. 434–441. doi:10.1109/PCCC.2007.358924.

[6] Cabrera-Arteaga, J., Donde, S., Gu, J., Floros, O., Satabin, L., Baudry,
B., Monperrus, M., 2020. Superoptimization of webassembly byte-
code, in: Proceedings of MoreVMs: Workshop on Modern Lan-
guage Runtimes. URL: http://arxiv.org/pdf/2002.10213, doi:10.
1145/3397537.3397567.

[7] Cabrera Arteaga, J., Laperdrix, P., Monperrus, M., Baudry, B., 2022.
Multi-variant execution at the edge, in: Proceedings of the 9th ACM
Workshop on Moving Target Defense, Association for Computing
Machinery, New York, NY, USA. p. 11–22. URL: https://doi.org/
10.1145/3560828.3564007, doi:10.1145/3560828.3564007.

[8] Cabrera-Arteaga, J., Monperrus, M., Toady, T., Baudry, B., 2023.
Webassembly diversification for malware evasion. Computers & Se-
curity 131, 103296. URL: https://www.sciencedirect.com/science/

article/pii/S0167404823002067, doi:https://doi.org/10.1016/j.cose.
2023.103296.

[9] Cao, D., Kunkel, R., Nandi, C., Willsey, M., Tatlock, Z., Polikarpova,
N., 2023a. Babble: Learning better abstractions with e-graphs and
anti-unification. Proc. ACM Program. Lang. 7. URL: https://doi.
org/10.1145/3571207, doi:10.1145/3571207.

[10] Cao, S., He, N., Guo, Y., Wang, H., 2023b. Brewasm: A general static
binary rewriting framework for webassembly, in: Hermenegildo,
M.V., Morales, J.F. (Eds.), Static Analysis, Springer Nature Switzer-
land, Cham. pp. 139–163.

[11] Cao, S., He, N., Guo, Y., Wang, H., 2023. WASMixer: Binary Obfus-
cation for WebAssembly. arXiv e-prints , arXiv:2308.03123doi:10.
48550/arXiv.2308.03123, arXiv:2308.03123.

[12] Cleemput, J.V., Coppens, B., De Sutter, B., 2012. Compiler miti-
gations for time attacks on modern x86 processors. ACM Trans. Ar-
chit. Code Optim. 8. URL: https://doi.org/10.1145/2086696.2086702,
doi:10.1145/2086696.2086702.

[13] Cohen, F.B., 1993. Operating system protection through program evo-
lution. Computers & Security 12, 565–584.

[14] Collberg, C., Thomborson, C., Low, D., 1997. A taxonomy of obfus-
cating transformations. Technical Report. Department of Computer
Science, The University of Auckland, New Zealand.

[15] Crane, S.J., Volckaert, S., Schuster, F., Liebchen, C., Larsen, P., Davi,
L., Sadeghi, A.R., Holz, T., De Sutter, B., Franz, M., 2015. It’s a
trap: Table randomization and protection against function-reuse at-
tacks, in: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Association for Comput-
ing Machinery, New York, NY, USA. p. 243–255. URL: https:

//doi.org/10.1145/2810103.2813682, doi:10.1145/2810103.2813682.
[16] Dongarra, J.J., Hinds, A., 1979. Unrolling loops in fortran. Software:

Practice and Experience 9, 219–226.
[17] Duck, G.J., Gao, X., Roychoudhury, A., 2020. Binary rewriting with-

out control flow recovery, in: Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation, Association for Computing Machinery, New York, NY,
USA. p. 151–163. URL: https://doi.org/10.1145/3385412.3385972,
doi:10.1145/3385412.3385972.

[18] D’Elia, D.C., Invidia, L., Palmaro, F., Querzoni, L., 2022. Evaluating
dynamic binary instrumentation systems for conspicuous features and
artifacts. Digital Threats 3. URL: https://doi.org/10.1145/3478520,
doi:10.1145/3478520.

[19] Fastly, 2020. The power of serverless, 72 times over. URL: https:
//www.fastly.com/blog/the-power-of-serverless-at-the-edge.

[20] Fastly, 2021. Stop a wasm compiler bug before it be-
comes a problem | fastly. https://www.fastly.com/blog/

defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem.
[21] Forrest, S., Somayaji, A., Ackley, D., 1997. Building diverse com-

puter systems, in: Proceedings. The SixthWorkshop on Hot Topics in
Operating Systems (Cat. No.97TB100133), pp. 67–72. doi:10.1109/
HOTOS.1997.595185.

[22] Google, 2020. Safeside. https://github.com/PLSysSec/safeside.
URL: https://github.com/PLSysSec/safeside.

[23] Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M.,
Gohman, D., Wagner, L., Zakai, A., Bastien, J., 2017a. Bringing
the web up to speed with WebAssembly, in: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 185–200.

[24] Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M.,
Gohman, D., Wagner, L., Zakai, A., Bastien, J., 2017b. Bringing the
web up to speed with webassembly, in: Proceedings of the 38th ACM
SIGPLANConference on Programming Language Design and Imple-
mentation, Association for Computing Machinery, New York, NY,
USA. p. 185–200. URL: https://doi.org/10.1145/3062341.3062363,
doi:10.1145/3062341.3062363.

[25] Hilbig, A., Lehmann, D., Pradel, M., 2021. An empirical study of
real-world webassembly binaries: Security, languages, use cases, in:
Proceedings of the Web Conference 2021, pp. 2696–2708.

[26] Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G.,

Cabrera-Arteaga et al. Page 19 of 20

Gal, A., Brunthaler, S., Wimmer, C., Franz, M., 2011. Compiler-
generated software diversity, in: Moving Target Defense. Springer,
pp. 77–98.

[27] Jacob, M., Jakubowski, M.H., Naldurg, P., Saw, C.W.N., Venkatesan,
R., 2008. The superdiversifier: Peephole individualization for soft-
ware protection, in: International Workshop on Security, Springer.
pp. 100–120.

[28] Jetbrain, 2023. Kotlin wasm. https://kotlinlang.org/docs/

wasm-overview.html. URL: https://kotlinlang.org/docs/

wasm-overview.html.
[29] Kim, M., Jang, H., Shin, Y., 2022. Avengers, assemble! sur-

vey of webassembly security solutions, in: 2022 IEEE 15th Inter-
national Conference on Cloud Computing (CLOUD), pp. 543–553.
doi:10.1109/CLOUD55607.2022.00077.

[30] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M.,
Yarom, Y., 2019. Spectre attacks: Exploiting speculative execution,
in: 2019 IEEE Symposium on Security and Privacy (SP), pp. 1–19.
doi:10.1109/SP.2019.00002.

[31] Koppel, J., Guo, Z., de Vries, E., Solar-Lezama, A., Polikarpova,
N., 2022. Searching entangled program spaces. Proc. ACM Pro-
gram. Lang. 6. URL: https://doi.org/10.1145/3547622, doi:10.1145/
3547622.

[32] Le, V., Afshari, M., Su, Z., 2014. Compiler validation via equiva-
lence modulo inputs, in: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Association for Computing Machinery, New York, NY, USA. p.
216–226. URL: https://doi.org/10.1145/2594291.2594334, doi:10.
1145/2594291.2594334.

[33] Lehmann, D., Pradel, M., 2019. Wasabi: A framework for dy-
namically analyzing webassembly, in: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Association for Com-
puting Machinery, New York, NY, USA. p. 1045–1058. URL: https:
//doi.org/10.1145/3297858.3304068, doi:10.1145/3297858.3304068.

[34] Loose, N., Mächtle, F., Pott, C., Bezsmertnyi, V., Eisenbarth,
T., 2023. Madvex: Instrumentation-based Adversarial Attacks
on Machine Learning Malware Detection. arXiv e-prints ,
arXiv:2305.02559doi:10.48550/arXiv.2305.02559, arXiv:2305.02559.

[35] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V.J., Hazelwood, K., 2005. Pin: building cus-
tomized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 190–200.

[36] Lundquist, G.R., Mohan, V., Hamlen, K.W., 2016. Searching for soft-
ware diversity: attaining artificial diversity through program synthe-
sis, in: Proceedings of the 2016 New Security Paradigms Workshop,
pp. 80–91.

[37] Nandi, C., Willsey, M., Anderson, A., Wilcox, J.R., Darulova, E.,
Grossman, D., Tatlock, Z., 2020. Synthesizing structured cad mod-
els with equality saturation and inverse transformations, in: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Association for Computing Ma-
chinery, New York, NY, USA. p. 31–44. URL: https://doi.org/10.
1145/3385412.3386012, doi:10.1145/3385412.3386012.

[38] Narayan, S., Disselkoen, C., Moghimi, D., Cauligi, S., Johnson,
E., Gang, Z., Vahldiek-Oberwagner, A., Sahita, R., Shacham, H.,
Tullsen, D., Stefan, D., 2021. Swivel: Hardening WebAssembly
against spectre, in: 30th USENIX Security Symposium (USENIX Se-
curity 21), USENIX Association. pp. 1433–1450. URL: https://www.
usenix.org/conference/usenixsecurity21/presentation/narayan.

[39] Premtoon, V., Koppel, J., Solar-Lezama, A., 2020. Semantic code
search via equational reasoning, in: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, Association for Computing Machinery, New York,
NY, USA. p. 1066–1082. URL: https://doi.org/10.1145/3385412.
3386001, doi:10.1145/3385412.3386001.

[40] Ren, X., Ho, M., Ming, J., Lei, Y., Li, L., 2021. Unleashing the hid-
den power of compiler optimization on binary code difference: An

empirical study, in: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Imple-
mentation, Association for Computing Machinery, New York, NY,
USA. p. 142–157. URL: https://doi.org/10.1145/3453483.3454035,
doi:10.1145/3453483.3454035.

[41] Rokicki, T., Maurice, C., Botvinnik, M., Oren, Y., 2022. Port con-
tention goes portable: Port contention side channels in web browsers,
in: Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security, Association for Computing Machin-
ery, New York, NY, USA. p. 1182–1194. URL: https://doi.org/10.
1145/3488932.3517411, doi:10.1145/3488932.3517411.

[42] Rossberg, A., 2019. WebAssembly Core Specification. Technical
Report. W3C. URL: https://www.w3.org/TR/wasm-core-1/.

[43] Sasnauskas, R., Chen, Y., Collingbourne, P., Ketema, J., Lup, G.,
Taneja, J., Regehr, J., 2017. Souper: A Synthesizing Superopti-
mizer. arXiv e-prints , arXiv:1711.04422doi:10.48550/arXiv.1711.
04422, arXiv:1711.04422.

[44] Schwarz, M., Maurice, C., Gruss, D., Mangard, S., 2017. Fantastic
timers and where to find them: High-resolution microarchitectural at-
tacks in javascript, in: Kiayias, A. (Ed.), Financial Cryptography and
Data Security, Springer International Publishing, Cham. pp. 247–267.

[45] Stiévenart, Q., De Roover, C., 2020. Compositional information flow
analysis for webassembly programs, in: 2020 IEEE 20th Interna-
tional Working Conference on Source Code Analysis and Manipu-
lation (SCAM), IEEE. pp. 13–24.

[46] Tate, R., Stepp, M., Tatlock, Z., Lerner, S., 2009. Equality sat-
uration: A new approach to optimization, in: Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Association for Computing Machinery,
New York, NY, USA. p. 264–276. URL: https://doi.org/10.1145/
1480881.1480915, doi:10.1145/1480881.1480915.

[47] Wagner, L., Mayer, M., Marino, A., Soldani Nezhad, A., Zwaan, H.,
Malavolta, I., 2023. On the energy consumption and performance of
webassembly binaries across programming languages and runtimes
in iot, in: Proceedings of the 27th International Conference on Evalu-
ation and Assessment in Software Engineering, Association for Com-
puting Machinery, New York, NY, USA. p. 72–82. URL: https:

//doi.org/10.1145/3593434.3593454, doi:10.1145/3593434.3593454.
[48] Wang, J., Chen, B., Wei, L., Liu, Y., 2017. Skyfire: Data-driven seed

generation for fuzzing, in: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 579–594. doi:10.1109/SP.2017.23.

[49] Wen, E., Dietrich, J., 2023. Wasmslim: Optimizing webassembly
binary distribution via automatic module splitting, in: 2023 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 673–677. doi:10.1109/SANER56733.2023.00069.

[50] Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha,
P., 2021. Egg: Fast and extensible equality saturation. Proc. ACM
Program. Lang. 5. URL: https://doi.org/10.1145/3434304, doi:10.
1145/3434304.

Cabrera-Arteaga et al. Page 20 of 20

CROW: CODE DIVERSIFICATION FOR
WEBASSEMBLY

Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry,
Martin Monperrus
Network and Distributed System Security Symposium (NDSS 2021), Workshop
on Measurements, Attacks, and Defenses for the Web

https://doi.org/10.14722/madweb.2021.23004

137

https://doi.org/10.14722/madweb.2021.23004

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga
KTH Royal Institute of Technology

Stockholm, Sweden
javierca@kth.se

Orestis Floros
KTH Royal Institute of Technology

Stockholm, Sweden
forestis@kth.se

Oscar Luis Vera Perez
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
oscar.vera-perez@inria.fr

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
martin.monperrus@csc.kth.se

Abstract—The adoption of WebAssembly increases rapidly,
as it provides a fast and safe model for program execution
in the browser. However, WebAssembly is not exempt from
vulnerabilities that can be exploited by malicious observers.
Code diversification can mitigate some of these attacks. In this
paper, we present the first fully automated workflow for the
diversification of WebAssembly binaries. We present CROW, an
open-source tool implementing this workflow through enumera-
tive synthesis of diverse code snippets expressed in the LLVM
intermediate representation. We evaluate CROW’s capabilities
on 303 C programs and study its use on a real-life security-
sensitive program: libsodium, a modern cryptographic library.
Overall, CROW is able to generate diverse variants for 239 out of
303 (79%) small programs. Furthermore, our experiments show
that our approach and tool is able to successfully diversify off-
the-shelf cryptographic software (libsodium).

I. INTRODUCTION

WebAssembly is the fourth official language of the Web
[36]. The language provides low-level constructs enabling
efficient execution times, much closer to native code than
JavaScript. It constitutes a fast and safe platform to execute
programs in the browser and embedded environments [21].
Consequently, the adoption of WebAssembly has been rapidly
growing since its introduction in 2015. Nowadays, languages
such as Rust and C/C++ can be compiled to WebAssembly using
mature toolchains and can be executed in all notable browsers.

The WebAssembly execution model is designed to be
secure and to prevent many memory and control flow attacks.
Still, as its official documentation admits [11], WebAssembly
is not exempt from vulnerabilities that could be exploited [30].
Code diversification [5], [28] is one additional protection that
can harden the WebAssembly stack. This consists in synthe-
sizing different variants of an original program that provide
the same functionalities but exhibit different execution traces.
In this paper, we investigate the feasibility of diversifying
WebAssembly code, which is, to the best of our knowledge,
an unresearched area.

Our contribution is a workflow and a tool, called CROW,
for automatic diversification of WebAssembly programs. It
takes as input a C/C++ program and produces a set of diverse
WebAssembly binaries as output. The workflow is based on
enumerative code synthesis. First, CROW lists blocks that
are potentially relevant for diversification, second, CROW
enumerates alternative instruction sequences, and third, CROW
checks that the new instruction sequences are functionally
equivalent to the original block. CROW builds on the idea
of superdiversification [25] and extends the concept to the
enumeration of a set of variants instead of synthesizing only
one solution. We also take into account the specificities of
WebAssembly and the details of its execution.

We evaluate the diversification capabilities of CROW in
two ways. First, we diversify 303 small C programs compiled
to WebAssembly. Second, we run CROW to diversify a real-
life cryptographic library that natively supports WebAssem-
bly. In both cases, we measure the diversity among binary
code variants, as well as the diversity of execution traces.
When measuring the diversity in binary code, we compare
the WebAssembly and the machine code variants. This way
we assess the ability of CROW at synthesizing variations in
WebAssembly, as well as the extent to which these variations
are preserved when compiling WebAssembly to machine code.
Our original experiments demonstrate the feasibility of diver-
sifying WebAssembly code. CROW generates diverse variants
for 239/303 (79%) C programs. TurboFan, the optimizing
compiler used in the V8 engine, preserves 99.48% of these
variants. CROW successfully synthesizes variants for the cryp-
tographic library. The variants indeed yield either different
execution traces. This is promising milestone in getting a more
secure Web environment through diversification.

To sum up, our contributions are:

• CROW: the first automated workflow and tool to diver-
sify WebAssembly programs, it generates many diverse
WebAssembly binaries from a single input program.
• A quantitative evaluation over 303 programs showing the

capability of CROW to diversify WebAssembly binaries
and measuring the impact of diversification on execution
traces.
• A feasibility study of the diversification on a real-world

WebAssembly program, demonstrating that CROW can
handle libsodium, a state-of-the-art cryptographic library.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/madweb.2021.23xxx
www.ndss-symposium.org

II. BACKGROUND

A. WebAssembly

WebAssembly is a binary instruction format for a stack-
based virtual machine. It is designed to address the problem
of safe, fast, portable and compact low-level code on the
Web. The language was first publicly announced in 2015
and since then, most major web browsers have implemented
support for the standard. Besides the Web, WebAssembly is
independent of any specific hardware or languages and can run
in a standalone Virtual Machine (VM) or in other environments
such as Arduino [20]. A paper by Haas et al. [21] formalizes
the language and its type system, and explains the design
rationale.

Listing 1 and 2 illustrate WebAssembly. Listing 1 presents
the C code of two functions and Listing 2 shows the result of
compiling these two functions into a WebAssembly module.
The type directives at the top of the module declare the
function: the types of its parameters and the type of the
result. Then, the definitions for the function follow. These
definitions are sequences of stack machine instructions. At the
end, the main function is exported so that it can be called from
outside this WebAssembly module, typically from JavaScript.
WebAssembly has four primitive types: integers (i32 and i64)
and floats (f32 and f64) and it includes structured instructions
such as block, loop and if.

Listing 1: C function that calculates the quantity 2x+ x
int f(int x) { return 2 * x + x; }

int main(void) { return f(10); }

Listing 2: WebAssembly code for Listing 1.
(module

(type (;0;) (func (param i32) (result i32)))
(type (;1;) (func (result i32)))
(func (;0;) (type 0) (param i32) (result i32)

local.get 0
local.get 0
i32.const 2
i32.mul
i32.add)

(func (;1;) (type 1) (result i32)
i32.const 10
call 0)

(export "main" (func 1)))

WebAssembly is characterized by an extensive security
model [11] founded on a sandboxed execution environment
that provides protection against common security issues such
as data corruption, code injection and return oriented program-
ming (ROP). However, WebAssembly is no silver bullet and
is vulnerable under certain conditions [30]. This motivates our
work on software diversification as one possible mitigation
among the wide range of security counter-measures.

B. Motivation for Moving Target Defense in the Web

The distribution model for web computing is as follows:
build one binary and distribute millions of copies, all over the
world, which run on browsers. In this model an attacker has
two key advantages over the developers: she has a runtime

environment that she fully controls and observes in any possi-
ble way. Consequently, when she finds a flaw in this virtually
transparent environment, knowing that this flaw is present in
the millions of copies that have been distributed over the world,
she can exploit the flaw at scale.

The developers can never assume that they can control the
web browser. Yet, they can challenge the second advantage
of the attacker, known as the break-once-break-everywhere
advantage. The developers can stop distributing clones of the
binary and distribute diverse versions instead, as suggested by
the pioneering software diversification works of Cohen [12]
and Forrest et al. [19].

In the context of diversification, moving target defense [40]
means distributing diverse variants constantly. In the context of
the web, it means distributing a different variant at each HTTP
request. Moving target defense is appropriate for mitigating
yet unknown vulnerabilities. The diversification technique does
not always remove the potential flaws, yet the vulnerabilities
in the diversified binaries can be located in different places.
With moving target defense, a successful attack on one browser
cannot be performed on another browser with the same ef-
fectiveness. The diversified binaries that CROW outputs can
be used interchangeably over the network, in a moving target
defence choreographed over the web.

To sum up, by combining moving target defense deploy-
ment to diversification, we reduce the information asymmetry
between the Web attacker and the defender, increasing the
uncertainty and complexity of successful attacks over all client
browsers [16], [42].

III. CROW’S DIVERSIFICATION TECHNIQUE

In this section we describe the workflow of CROW for
diversifying WebAssembly programs. First we introduce the
main concepts behind CROW. Then, we describe each stage
of the workflow and we discuss the key implementation details.

A. Definitions

In this subsection we define the key concepts for CROW.

Definition 1: Block (based on Aho et al. [2]): Let P be
a program. A block B is a grouping of declarations and
statements in P inside a function F .

Definition 2: Program state (based on Mangpo et al. [35]):
At any point in time, the program state S is defined as the
collection of local and global variables, and, the program
counter pointing to the next instruction.

Definition 3: Pure block: A block B is said to be pure if
and only if, given the program state Si, every execution of B
produces the same state So.

Definition 4: Functional equivalence modulo program
state (based on Le et al. [29]): Let B1 and B2 be two blocks.
We consider the program state before the execution of the
block, Si, as the input and the program state after the execution
of the block, So, as the output. B1 and B2 are functionally
equivalent if given the same input Si both codes produce the
same output So.

2

Definition 5: Code replacement: Let P be a program and T
a pair of blocks (B1, B2). T is a candidate code replacement
if B1 and B2 are both pure as defined in Definition 3 and
functionally equivalent as defined in Definition 4. Applying
T to P means replacing B1 by B2. The application of T
to P produces a program variant P ′ which consequently is
functionally equivalent to P .

CROW generates new program variants by finding and
applying code replacements as defined in Definition 5. A
program variant could be produced by applying more than one
candidate code replacement. For example, the tuple, composed
by the code blocks in Listing 3 and Listing 4, is a code
replacement for Listing 2.

Listing 3: WebAssembly
pure code block from List-
ing 2.
local.get 0
i32.const 2
i32.mul ; 2 * x ;

Listing 4: Code block that
is functionally equivalent to
Listing 3
local.get 0
i32.const 1
i32.shl ; x << 1 ;

B. Overview

CROW synthesizes variants for WebAssembly programs.
We assume that the programs are generated through the
LLVM compilation pipeline. This assumption is motivated as
follows: first, LLVM-based compilers are the most popular
compilers to build WebAssembly programs [30]; second, the
availability of source code (typically C/C++ for WebAssembly)
provides a structure to perform code analysis and produce code
replacements that is richer than the binary code.

CROW takes as input a C/C++ program and produces a
set of unique, diversified WebAssembly binaries. Figure 1
shows the stages of this workflow. The workflow starts with
compiling the input program into LLVM bitcode using clang.
Then, CROW analyzes the bitcode to identify all pure blocks
and to synthesize a set of candidate replacements for each
pure block. This is what we call the exploration stage. In
the generation stage, CROW combines the candidate code
replacements to generate different LLVM bitcode variants.
Finally, those bitcode variants are compiled to WebAssembly
binaries that can be sent to web browsers.

Challenges. The concept of diversifying WebAssembly
programs is novel and it is arguably hard for the following
reasons. First, WebAssembly is a structured binary format,
without goto-like instructions. This prevents the direct ap-
plication of a wide range of diversification operators based
on goto [41]. Second, the existing transformation and di-
versification tools target instruction sets larger than the one
of WebAssembly [39]. This limits the efficiency of diversi-
fication, and the possibility of searching for a large num-
ber of equivalent code replacements. We address the former
challenge using the LLVM intermediate representation as the
target for diversification. We address the latter challenge by
tailoring a superoptimizer for LLVM, using its subset of the
LLVM intermediate representation. In particular, we prevent
the superoptimizer from synthesizing instructions that have
no correspondence in WebAssembly (for example, freeze
instructions), which is an essential step to get executable
diversified WebAssembly code.

C. Exploration stage

Given a program P for which we want to generate Web-
Assembly variants, the exploration stage of CROW identifies
all pure blocks in the LLVM bitcode of P . CROW considers
every directed acyclic graph contained in one function as a
pure block. Then, CROW searches for code replacements for
each one of them.

The generation of a code replacement consists of two steps.
First, the synthesis of the new block, and, second, equivalence
checking. Every variant block that passes the equivalence
check is stored for use in diversification. The synthesis of block
variants consists of enumerating all possible blocks that can
be built as a combination of a given number of instructions,
bounded by a maximum value to keep a tractable synthesis
space.

There are two parameters to control the size of the search
space and hence the time required to traverse it. On one hand,
one can limit the size of the variants. In our experiments we
limit the block variants to a maximum of 50 instructions. On
the other hand, one can limit the set of instructions that are
used for the synthesis. In our experiments, we use between 1
instruction (only additions) and 60 instructions (all supported
instructions in the synthesizer). This configuration allows the
user to find a trade-off between the amount of variants that are
synthesized and the time taken to produce them.

Listing 5: Listing 1 in LLVM’s intermediate representation.

define i32 @f(i32) {
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

ret i32 %3
}

define i32 @main() {
%1 = tail call i32 @f(i32 10)
ret i32 %1
}

Block A
%2 = mul nsw i32 %0,2

Block B
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

In Listing 5 we illustrate the LLVM bitcode representation
of Listing 1. In this bitcode, CROW identifies two pure
blocks in function f(), which are displayed on the right
part of the listing, in gray and green. The first pure block
is composed of one single instruction (line 2) that performs
the 2*x multiplication. The second block has two instructions,
one multiplication and one addition.

Using CROW, it is possible to diversify both blocks. For
example, using a maximum of 1 instruction per replacement
and searching over the complete bitcode instruction set, a
potential replacement for Block A is: %2 = shl nsw i32
%0,1 %. This replacement calculates the same expression
2*x, using a shift left operation.

To determine the equivalence between a pure block and a
candidate replacement, we use an equivalence checker based
on SMT [17]. In our example, the checker would prove that
there cannot be a value of x such that 2 ∗ x 6= x � 1. In
general, if no such counter-example exists, then the functional
equivalence is assumed. On the other hand, if there exists an
input resulting in different outputs for a block and a variant,
then they are proven not equivalent and the variant is discarded.

3

CROW

WASM

clang
LLVM
WASM
Backend

C/C++	
source	code

LLVM
	bitcode

LLVM
	bitcode
variant

WASM

WASM

LLVM
	bitcode
variant

LLVM
	bitcode
variant

...
...

2

Exploration Generation

1

Code	replacements

Code
block

Equivalent
code	block

...

Code
block

Equivalent
code	block

Code
block

Equivalent
code	block

Fig. 1: CROW’s workflow for diversifying WebAssembly programs.

D. Generation stage

In this stage, we select and combine code replacements that
have been synthesized during the exploration stage, in order to
generate WebAssembly binary variants. We apply each code
replacement to the original program to produce a LLVM IR
variant. Then, this IR is compiled into a WebAssembly binary.
CROW generates WebAssembly binaries from all possible
combinations of code replacements as the power set over all
code replacements.

After the exploration phase, it is possible that two subsets
of code replacements overlap, i.e., they produce the same
WebAssembly binary. The overlap between blocks is explained
as follows: Let S = {(B1, R1), (B1, R2), · · · , (Bn, Rm)} be
a set of candidate replacements over a program P . If two
blocks from the original program Bi, Bj , j 6= i, overlap, i.e.,
the intersection of CFG(Bi)

1 and CFG(Bj) is not empty,
then only the replacements of the largest original block are
preserved when combining blocks.

In this example, the exploration stage synthesizes 6 + 1
bitcode variants for the considered blocks respectively, which
results in 14 module variants (the power set combination size).
Yet, the generation stage would eventually generate 7 variants
from the original WebAssembly binary. This gap between the
number of potential and the actual number of variants is a
consequence of the redundancy among the bitcode variants
when composing several variants into one.

E. Implementation

The majority of the WebAssembly applications are built
from C/C++ source code using the LLVM toolchain. Conse-
quently, the implementation of CROW is based on LVVM/
Furthermore, CROW extends Souper [38], a superoptimizer
for LLVM that aims to reduce the size of binary code. Souper
has its own intermediate representation, which is a subset of
the LLVM IR.

To extract code blocks, we scan LLVM modules, looking
for instructions that return integer-typed values. Each such
instruction is considered as the exit of a code block. Souper’s
representation of a code block is built as a backward traversal
process through the dependencies of the detected instruction.

1CFG(A) refers to backward Control Flow Graph starting at inst. A.

If memory loads or function calls are found, the backward
traversal process is stopped and the current instruction is
considered as an input variable for the code block. Notice
that, by construction, Souper’s translation is oblivious to the
memory model, thus, it cannot infer string data types or
other abstract data types. The translation from Souper IR to a
BitVector SMT theory is done on the fly. Souper uses the z32

solver to check the equivalence between a code block original
and a potential replacement for it.

We now summarize the main changes that we implement
in Souper and in the LLVM backend in order to support
diversification. Souper, as a superoptimizer, aims at gener-
ating a single variant that is smaller than the original, yet
we want to obtain as many blocks as possible. To achieve
automatic diversification, we modify Souper to disable the
key cost restriction functions, data-flow pruning and peephole
optimizations, all being detrimental for diversification. In order
to increase the number of variants that CROW can generate,
CROW parallelizes the process of replacement synthesis.

In addition, CROW orchestrates a series of Souper execu-
tions with various configurations (in particular the size of the
replaced expression). Finally, we carefully fine-tune a set of
19 Souper options to ensure that the search is effective for
diversification in feasible time.

In the generation stage of CROW, we also modify Souper
to amplify the generation of WebAssembly binary diversity.
Initially, Souper generates a single bitcode variant, inserting
all replacements at once. We modify it so that we can obtain
a combination of code replacements. Finally, on the LLVM
side, we disable all peephole optimizations in the WebAssem-
bly backend, in particular instructions merging and constant
folding. This aims to preserve the variations introduced in the
LLVM bitcode during the generation of binaries.

The implementation of CROW is publicly available for
sake of open science and can be reviewed at https://github.
com/KTH/slumps/tree/master/crow.

IV. EVALUATION PROTOCOL

To evaluate the capabilities of CROW to diversify Web-
Assembly programs, we formulate the following research

2https://github.com/Z3Prover/z3

4

questions:

RQ1: To what extent are the program variants generated
by CROW statically different? We check whether
the WebAssembly binary variants produced by CROW
are different from the original WebAssembly binary.
Then, we assess whether the generation of x86 machine
code performed by V8’s WebAssembly engine preserves
CROW’s transformations.

RQ2: To what extent are the program variants gener-
ated by CROW dynamically different? It is known
that not all diversified programs produce distinguishable
executions [15], sometimes it is impossible to observe
different behaviors between variants. We check for the
presence of different behaviors with a custom Web-
Assembly interpreter, characterizing the behavior of a
WebAssembly program by its stack operation trace.

RQ3: To what extent can CROW be applied to diversify
real-world security-sensitive software? We assess the
ability of CROW to diversify a state-of-the-art crypto-
graphic library for WebAssembly, libsodium [18].

A. Corpus

We answer RQ1 and RQ2 with a corpus of programs appro-
priate for our experiments. We take programs from the Rosetta
Code project3. This website hosts a curated set of solutions for
specific programming tasks in various programming languages.
It contains a wide range of tasks, from simple ones, such as
adding two numbers, to complex algorithms like a compiler
lexer. We first collect all C programs from Rosetta Code, which
represents 989 programs as of 01/26/2020. Next, we apply a
number of filters. We discard 1) all programs that do not com-
pile with clang, 2) all interactive programs requiring input
from users i.e., invoking functions like scanf, 3) all programs
that contain more than 100 blocks, 4) all programs without
termination, 5) all programs with non-deterministic operations,
for example, programs working with time or random functions.
This filter produces a final set of 303 programs.

The result is a corpus of 303 C programs. These programs
range from 7 to 150 lines of code and solve a variety of prob-
lems, from the Babbage problem to Convex Hull calculation.

B. Protocol for RQ1

With RQ1, we assess the ability of CROW to generate
WebAssembly binaries that are different from the original
program. For this, we compute a distance metric between the
original WebAssembly binary and each binary generated by
CROW. Since WebAssembly binaries are further transformed
into machine code before they execute, we also check that this
additional transformation preserves the difference introduces
by CROW in the WebAssembly binary. We use the Turbofan
ahead-of-time compiler of V8, with all its possible optimiza-
tions, to generate a x86 binary for each WebAssembly binary.
Then, we compare the x86 version of each variant against the
x86 binary corresponding to the original WebAssembly binary.

We compare the WebAssembly and machine code of each
program and its variant using Dynamic Time Warping (DTW)

3http://www.rosettacode.org/wiki/Rosetta Code

[31]. DTW computes the global alignment between two se-
quences. It returns a value capturing the cost of this alignment,
which is actually a distance metric, called DTW. The larger the
DTW distance, the more different the two sequences are. In our
case, we compare the sequence of instructions of each variant
with the initial program and the other variants. We obtain two
DTW distance values for each program-variant pair: one at the
level of WebAssembly code and the another one at the level
of x86 code. Metric 1 below defines these metrics.

Metric 1: dt static: Given two programs PX and VX

written in X code, dt static(PX , VX), computes the DTW
distance between the corresponding program instructions for
representation X (X ∈ {Wasm, x86}). A dt static(PX ,
VX) of 0 means that the code of both the original program
and the variant is the same, i.e., they are statically identical
in the representation X . The higher the value of dt static,
the more different the programs are in representation X.

We run CROW on our corpus of 303 programs. We
configure CROW to run with a diversification timeout of 6
hours per program. For each program, we collect the set of
generated variants. For all pairs program, variant that are
different, we compute both dt static for WebAssembly and
x86 representations.

The key property we consider is as follows: if
dt static(PWasm, P ′

Wasm) > 0 and dt static(Px86, P ′
x86)

> 0, this means that both programs are still different when
compiled to machine code, and we conclude that V8’s compiler
does not remove the transformations made by CROW. Notice
that, this property only makes sense between variants of the
same program (including the original).

C. Protocol for RQ2

For RQ2, we compare the executions of a program and its
variants for a given input. In this experiment, we characterize
the execution of a WebAssembly binary according to its trace
of stack operations.

This method of tracing allows us to evaluate CROW’s
effect on program execution according to the WebAssembly
specification, independently of any specific engine.

For each execution of a WebAssembly program, we collect
a trace of stack operations. These traces are composed of stack-
type instructions: push <value> and pop <value>. All
traces are ordered with respect to the timestamp of the events.
We compare the traces of the original program against those of
the variants with DTW. DTW computes the global alignment
between two traces and provides a value for the cost of this
alignment.

Metric 2: dt dyn: Given a program P and a CROW gen-
erated variant P’, dt dyn(P,P’), computes the DTW distance
between the corresponding stack operation traces collected
during their execution. A dt dyn of 0 means that both traces
are identical. The higher the value, the more different the stack
operation traces.

To answer RQ2 we compute Metric 2 for a study subject
program and all the unique program variants generated by
CROW in a pairwise comparison. The pairwise comparison

5

allows us to compare the diversity between variants as well.
We use SWAM4 to collect the stack operation traces. SWAM
is a WebAssembly interpreter that provides functionalities to
capture the dynamic information of WebAssembly program
executions including the stack operations. We compute the
DTW distances with STRAC [10].

The builtin WebAssembly API for JavaScript is usually
mutable, thus, the same model for traces collection can be
implemented on top of V8. In other words, a custom interpreter
can be implemented in order to collect the traces in the browser
or standalone JavaScript engines. This validates the usage of
SWAM to study the traces diversity.

D. Protocol for RQ3

In RQ3, we assess the ability of CROW to diversify
a mature and complex software library related to security.
We choose the libsodium [18] cryptographic library, which
natively compiles to WebAssembly. With 3752 commits con-
tributed by 96 developers, its API provides the basic blocks for
encryption, decryption, signatures and password hashing. We
experiment with code revision 2b5f8f2b, which contains 45232
lines of C code. Libsodium has 102 separate WebAssembly
modules that we use as input for CROW. Each module
corresponds to one C file that encompasses a set of related
functions.

To answer RQ3, we run CROW on the libsodium bitcodes,
generating a set of WebAssembly variants. Then, we assess
both binary code diversity and behavioural diversity between
the variants and the original libsodium, using the same tech-
niques as in RQ1 and RQ2.

Collecting traces The libsodium repository includes an
extensive test suite of 77 tests, where one test is one usage
scenario. We use this test suite to measure the trace diversity
among program variants. Since some test traces are larger than
1 GB each, we focus on reasonably sized tests: we select the
41/77 test cases that produce a trace containing less than 50
million events each.

To measure the relative trace diversification for each test,
we normalize the dt dyn used in RQ2 by dividing it with
the length of the original trace. This allows us to compare the
relative success of CROW’s diversification technique across
different tests.

Since libsodium uses a pseudo-number generator, we set
a static seed when executing libsodium, so that the diversity
observed in traces is only due to CROW’s diversification. This
seed is given to the arc4random API used by libsodium in
WebAssembly. To quantify the effectiveness of our diversifica-
tion technique, we compare the trace distance produced by our
technique with the trace distance that occurs when the seed is
changed (baseline).

V. EXPERIMENTAL RESULTS

In this section we present the results for the research
questions formulated in section IV.

4https://github.com/satabin/swam

0 2000 4000 6000

DTW distance

0%

20%

40%

60%

80%

100% DTW(wasm)

DTW(x86)

0 5
0.00

0.25

0.50

Fig. 2: Cumulative distribution for all pairwise comparisons
between a program and its variants. Each line corresponds to
a different program representation.

A. To what extent are the program variants generated by
CROW statically different?

We run CROW on 303 C programs compiled to WebAs-
sembly. CROW produces at least one unique program variant
for 239/303 programs. For the rest of the programs (64/303),
the timeout is reached before CROW can find any valid variant.

We subsequently perform a manual analysis of the pro-
grams that yield more than 100 unique WebAssembly variants.
This reveals one key reason that favors a large number of
unique WebAssembly variants: the programs include bounded
loops. In these cases CROW synthesizes variants for the loops
by unrolling them. Every time a loop is unrolled, the loop body
is copied and moved as part of the outer scope of the loop.
This creates a new, statically different, program. The number
of programs grows exponentially with nested loops.

A second key factor for the synthesis of many variants
relates to the presence of arithmetic. Souper, the synthesis
engine used by CROW, is effective in replacing arithmetic
instructions by equivalent instructions that lead to the same
result. For example, CROW generates unique variants by re-
placing multiplications with additions or shift left instructions
(Listing 8). Also, logical comparisons are replaced, inverting
the operation and the operands (Listing 9).

Listing 8: Diversification
through arithmetic expression
replacement.

local.get 0
i32.const 2
i32.mul

local.get 0
i32.const 1
i32.shl

Listing 9: Diversification
through inversion of
comparison operations.

local.get 0
i32.const 10
i32.gt_s

i32.const 11
local.get 0
i32.le_s

We now discuss the prevalence of the transformations made
by CROW when the WebAssembly binaries are transformed to
machine code, specifically with the V8’s engine. In Figure 2
we plot the cumulative distribution of dt static, comparing
WebAssembly binaries (in blue) and x86 binaries (in orange).
The figure plots a total of 103003 dt static values for each
representation, two values for each variant pair comparison
(including original) for the 239 program. The value on the
y-axis shows which percentage of the total comparisons lie

6

Listing 10: Excerpt of WebAssembly program p74: CROW
replaces a loop by a constant.

local.set 1
loop ;; label = @1
...

end
...
i32.store

local.get 0
i32.const 25264

i32.store

below the corresponding dt static value on the x-axis. Since
we measure the distances between original programs and
WebAssembly variants, then 100% of these binaries have
dt static > 0. Let us consider the x86 variants: dt static is
strictly positive for 99.48% of variants. In all these cases, the
V8 compilation phase does not undo the CROW diversification
transformations. Also, we see that there is a gap between
both distributions, the main reason is the natural inflation
of machine code. For example, two variants that differ by
one single instruction in WebAssembly, can be translated to
machine code where the difference is increased by more than
one machine code instruction.

The zoomed subplot focuses on the beginning of the
distribution, it shows that the dt static is zero for 0.52% of
the x86 binaries. In these cases the V8 TurboFan compiler
from WebAssembly to x86 reverts the CROW transformations.
We find that CROW produces at least one of these reversible
transformations for 34/239 programs. Listing 11 shows one
of the most common transformations that is reversed by
TurboFan, according to our experiments.

Listing 11: Replacement in WebAssembly that is trans-
lated to the same x86 code by V8-TurboFan.

i32.const -<n>
i32.sub

i32.const <n>
i32.add

We look at the cases that yield a small number of variants.
There is no direct correlation between the number of identified
blocks and the number of unique variants. We manually
analyze programs that include a significant number of pure
blocks, for which CROW generates few variants. We identify
two main challenges for diversification.

1) Constant computation We have observed that Souper
searches for a constant replacement for more than 45% of
the blocks of each program while constant values cannot be
inferred. For instance, constant values cannot be inferred for
memory load operations because CROW is oblivious to a
memory model.

2) Combination computation The overlap between code
replacements, discussed in subsection III-D, is a second factor
that limits the number of unique variants. CROW can generate
a high number of variants, but not all replacement combina-
tions are necessarily unique.

Regarding the potential size overhead of the generated
variants, we have compared the WebAssembly binary size of

the 239 programs with their variants. The ratio of size change
between the original program and the variants ranges from
82% (variants are smaller) to 125% (variants are larger) for
all Rosetta programs. This limited impact on the binary size
of the variants is good news because they are meant to be
distributed to browsers over the network.

Answer to RQ1

CROW is able to generate diverse variants of Web-
Assembly programs for 239/303 (79%) programs in
our corpus. We observe that programs that include
bounded loops and arithmetic expressions are highly
prone to diversification. V8’s TurboFan compilation
to x86 code preserves 99.48% of the transformations
performed by CROW. To our knowledge, this is the
first ever realization of automated diversification for
WebAssembly.

B. To what extent are the program variants generated by
CROW dynamically different?

Now, we focus on the 41 programs that have at least 9
unique WebAssembly variants in order to study the diversity
of execution traces. We apply the protocol described in sub-
section IV-C by executing the WebAssembly programs and
their unique variants in order to collect the stack operation
traces. Then, we compare the traces of each pair of original
program and a variant. We run 1906 program executions and
we perform 98774 trace pair comparisons.

Table I summarizes the observed trace diversity, as captured
by dt dyn (Metric 2), among each program and their variants.
The table is structured as follows: the first, second and third
columns contain the program id, the number of unique variants
and the overall sum of all blocks replacements respectively.
The table summarizes the distribution of distances between
stack operation trace pairs: the minimum value, the maximum
value, the median value, the percentage of values equal to zero
and the percentage of values greater than zero. The programs
are sorted with respect to the number of unique variants. The
green highlight color in > 0% columns represents more than
50% of non-zero comparisons, i.e., high diversification. For
instance, the first row shows the trace diversity for p96, where
99.70% of the pairwise comparisons between all collected
traces have a different dt dyn .

For the stack operation traces, all programs have at least
one variant that produces a trace different from the original.
All but one (p81) programs have the majority of variants
producing a different stack operation trace. This shows the
real effectiveness of CROW for diversifying stack operation
traces.

We manually analyze variants with high and low trace
diversity. We observe that constant inferring is effective at
changing the stack operation trace. For instance, for program
p74 shown in Listing 10, CROW removes a loop by replacing
it with a constant assignment. The execution of this variant
produces traces that are different because the loop pattern is
not visible anymore in the trace, and consequently, the distance
between the original and the variant traces is large.

7

NAME #var Σ Min Max Median 0 % > 0 %

1 p96 220 15 0 24062 820 0.30 99.70

2 p56 192 36 0 45420 1416 1.84 98.16

3 p78 159 35 0 20501 759 1.52 98.48

4 p111 144 45 0 2114 520 3.74 96.26

5 p166 101 152 0 44538 66 45.80 54.20

6 p122 91 34 0 46026 6434 0.24 99.76

7 p67 89 77 0 94036 85692 0.29 99.71

8 p68 85 10 0 10554 260 3.64 96.36

9 p80 78 9 0 17238 618 3.92 96.08

10 p204 77 42 0 36428 3356 0.33 99.67

11 p183 76 9 0 90628 84402 0.57 99.43

12 p136 62 70 0 62953 58028 0.60 99.40

13 p167 46 232 8 888 724 0.00 100.00

14 p226 42 13 0 90736 74476 8.26 91.74

15 p99 38 74 16 9936 5037 0.00 100.00

16 p18 36 7 0 15620 145 1.10 98.90

17 p140 29 17 0 13280 172 6.59 93.41

18 p59 27 6 0 85390 40 1.43 98.57

19 p199 21 87 0 27482 728 4.68 95.32

20 p91 21 21 0 50002 228 43.81 56.19

21 p223 21 115 16 40911 632 0.00 100.00

NAME #var Σ Min Max Median 0 % > 0 %

22 p168 20 6 0 22200 18896 2.20 97.80

23 p174 18 40 6 6566 6395 0.00 100.00

24 p81 17 86 0 4419 0 84.62 15.38

25 p141 17 6 8 2894 132 0.00 100.00

26 p108 16 6 0 85168 79903 8.97 91.03

27 p98 15 4 0 33 25 6.06 93.94

28 p89 14 45 10 15952 89 0.00 100.00

29 p36 14 52 312 33266 30298 0.00 100.00

30 p135 13 5 0 20288 20163 3.57 96.43

31 p161 12 91 240 9792 1056 0.00 100.00

32 p147 12 32 0 54071 21274 7.14 92.86

33 p11 10 38 29798 51846 35119 0.00 100.00

34 p125 10 51 0 4399 4368 7.14 92.86

35 p131 9 4 140 1454 685 0.00 100.00

36 p69 9 48 28 29243 28956 0.00 100.00

37 p134 9 20 4 514 186 0.00 100.00

38 p74 9 19 126 8332 6727 0.00 100.00

39 p79 9 97 4 29 16 0.00 100.00

40 p33 9 52 4 2342 15 0.00 100.00

41 p157 9 64 36 242 166 0.00 100.00

TABLE I: Dynamic diversity for 41 diversified WASM programs. The dynamic diversity is captured by dt dyn between traces.
The rows are sorted by the number of unique variants per program. The table is structured as follows: the first, second and
third columns contain the program id, the number of unique variants and the overall sum of all blocks replacements respectively.
Following, the stats for the dt dyn metric. The colorized cells in the > 0% column represent high diversification.

Listing 12: Statically different WebAssembly replacements
with the same behavior, gray for the original code, green for
the replacement.

(1) i32.lt_u
(2) i32.le_s

i32.lt_s
i32.lt_u

(3) i32.ne
(4) local.get 6

i32.lt_u
local.get 4

We note that there is no relation between the trace distance
and the number of block replacements. A high trace distance
does not necessarily imply a high number of replacements.
For instance, program p135 has only 4 possible replacements
overall its 5 identified blocks yet a median dt dyn of 20163.

We subsequently analyze the cases where diversification is
not reflected in stack operation traces. For example, more than
40% of the pairwise dt dyn distances for p166, p91 and
p81 are equal to zero. This indicates a lower diversity among
the population of variants, than for all the other programs.
This happens because some variants have two different bitcode
instructions (original and replacement) that trigger the same
stack operations. The instructions in Listing 12 are concrete
cases of such kind of replacements. The four cases in List-
ing 12 leave the same value in the stack operation trace.
For each case, the original instruction and the replacement
are semantically equal in the program domain. The fourth
case is a local variable index reallocation, this replacement
only changes the index of the local variable but not the event
in the stack operation trace. These replacements are sound,

produce statically diverse code, but they are not useful to
dynamically diversify the original program. This confirms the
complementary of using static and dynamic metrics to assess
diversification.

The effectiveness of CROW on diversifying stack operation
traces is significant. In a security context, such diverse stack
operation traces are likely to mitigate potential side-channel
attacks [30]. Notably, the attacks based on code profiling are
affected when the executed opcodes and the corresponding
profiles are different [37].

Answer to RQ2

CROW is successful at generating diverse WebAssem-
bly variant programs, for which we are able to observe
different stack operation traces. In other words, CROW
generates dynamically different binaries, and ensures
that variants of a given program yield different stack
operation traces.

C. To what extent can CROW be applied to diversify real-
world security-sensitive software?

We run CROW on each of the 102 modules of libsodium
with a 6-hour timeout. We find 45/102 modules that do not
contain any pure block, so they are not amenable to our
diversification technique. CROW produces at least one valid
WebAssembly module variant for 15 of the remaining 57
modules.

8

Module & Description #var #func Diversified Functions #calls
argon2-core
Core functions for the implementation of the Argon2 key
derivation (hash) function [9].

17 6 argon2_finalize
argon2_free_instance
argon2_initialize

0
0
0

argon2-encoding
Functions for encoding and decoding (including salting) Ar-
gon2 [9] hash strings.

11 2 argon2_decode_string
argon2_encode_string

0
0

blake2b-ref
Reference implementation for the BLAKE2 [4] hash function.

7 11 blake2b
blake2b_salt_personal
blake2b_update

0
1.46E+04
2.04E+04

chacha20_ref
Reference implementation of the ChaCha20 stream cipher [6].

7 5 chacha20_encrypt_bytes
stream_ietf_ext_ref_xor_ic
stream_ref
stream_ref_xor_ic

3.51E+06
7.62E+03
1.14E+04
1.14E+05

codecs
Implementations of commonly used codecs for conversions
between binary formats like Base64 [26].

79 5 sodium_base642bin
sodium_base64_encoded_len
sodium_bin2base64
sodium_bin2hex
sodium_hex2bin

0
0
0

2.57E+05
0

core_ed25519
Implementation of the Edwards-curve Digital Signature Algo-
rithm [8].

2 19 crypto_core_ed25519_is_valid_point 0

crypto_scrypt-common
Utility and low-level API functions for the scrypt key deriva-
tion (hash) function [34].

5 5 escrypt_gensalt_r 0

pbkdf2-sha256
Implementation of the Password-Based Key Derivation Func-
tion 2 (PBKDF2) [27].

14 1 escrypt_PBKDF2_SHA256 0

pwhash_scryptsalsa208sha256
High-level API for the scrypt key derivation function [34].

8 19 crypto_pwhash_scryptsalsa208sha256 0

pwhash_scryptsalsa208sha256_nosse
Same as above, but does not use Streaming SIMD Extensions
(SSE).

32 3 escrypt_kdf_nosse
salsa20_8

0
0

randombytes
Pseudorandom number generators.

1 11 randombytes_uniform 5.61E+02

salsa20_ref
Contains a reference implementation of the Salsa20 stream
cipher [7].

12 2 stream_ref
stream_ref_xor_ic

1.14E+04
1.14E+05

scalarmult_ristretto255_ref10
Implementation of the Ristretto255 prime order elliptic curve
group [22].

29 4 scalarmult_ristretto255
scalarmult_ristretto255_base
scalarmult_ristretto255_scalarbytes

0
0
0

stream_chacha20
High-level API for the ChaCha20 stream cipher [8].

2 15 crypto_stream_chacha20
crypto_stream_chacha20_ietf
crypto_stream_chacha20_ietf_ext
crypto_stream_chacha20_ietf_ext_xor_ic
crypto_stream_chacha20_ietf_xor
crypto_stream_chacha20_ietf_xor_ic
crypto_stream_chacha20_xor
crypto_stream_chacha20_xor_ic

6.65E+02
3.19E+03
2.66E+03
1.68E+02
1.68E+02
2.32E+03

0
1.68E+02

verify
Functions used to compare secrets in constant time to avoid
timing attacks.

7 6 crypto_verify_16
crypto_verify_32
crypto_verify_64

2.69E+05
3.40E+03

0

Total 256 114 40 functions

TABLE II: Libsodium modules with at least one variant generated by CROW. The columns on the left include the facts about each
module. The first column contains the name and the functional description of the modules. The second column, #var (highlighted)
gives the number of unique variants generated by CROW. The third column, #func, lists the total amount of functions in each
module. The remaining columns include a list of functions that CROW has successfully diversified and the number of calls per
function in the test suite.

Table II presents the key results for these 15 successfully
diversified modules. The first two columns contain the name
and description of the diversified module, and, the number
of unique static variants. The other columns show the total
number of functions inside the module, the names of the
diversified functions and the number of calls to each function
in the considered tests.

Generation of WebAssembly library variants from WebAs-
sembly module variants. The successfully diversified modules
can be combined to obtain a large pool of different versions of
the packaged libsodium WebAssembly library. The Cartesian
product of all module variants produces in theory 1.66E+15
unique libsodium variants. Yet, it is unpractical to store and
execute this large number of variants. Thus, we sample the
pool of possible variants to evaluate our generated variants.
First, for each of the 256 modules, we rank each module
variant with respect to the number of lines changed in the

final WebAssembly textual format. Then, to produce the i-th
library variant, we combine the i-th variant for each module
of libsodium, in order to produce maximally diversified library
variants first. If a module has less than i variants, we use the
original, non-diversified module. According to Table II, the
maximum number of unique variants for a single module is
79 (codecs module). Thus, we sample 79 unique libsodium
variants, ordered by the amount of diversification (the first
variant contains the most changes, and so on). For each variant
we execute the complete test suite to validate its correctness.
All test cases successfully pass for all diversified library
binaries.

Dynamic evaluation of libsodium variants. We compare
the dynamic behaviour of the original libsodium and the
79 library variants. Figure 3 illustrates the distribution of
dt dyn of all collected traces for each libsodium test. The
dt dyn distance is calculated between each diversified trace

9

1

1

17

3

7

1

1

6

4

7

17

3

5

3

6

4

5

17

N
u

m
b

er
of

u
n

iq
u

e
va

ri
an

ts
fo

r
ea

ch
te

st

0.0 0.2 0.4 0.6 0.8 1.0

Normalized DTW distance

auth3

sodium utils3

scalarmult5

onetimeauth2

box easy

generichash2

stream3

box2

box

secretbox easy

scalarmult

stream4

aead xchacha20. . .

secretstream

secretbox2

secretbox

aead chacha20. . .

kdf

Fig. 3: Distribution of normalized dt dyn distances over the
set of libsodium variants covered by each test. The left Y axis
lists the name of each test. The number of unique variants used
per test is listed on the right Y axis. The black triangles point
to the dt dyn distance between two different stack operation
traces of the original test with different random seeds.

and the corresponding original trace for the same test. Each
horizontal bar gives the distribution of dt dyn over the 79
diversified libraries per test. The black triangles show the
dt dyn distance between two different executions of the same
test with different random seeds. They serve as a baseline to
compare the artificial diversity introduced by CROW, against
the natural trace diversity that appears because of random
number generation.

For 18/19 tests, we observe that CROW’s diversified
modules produce a different trace than the original. The wider
violin plots that reach the right-hand side of the figure include
variants that significantly diversify the test execution. We
observe that 4/18 tests stand out as they include variants with
at least 0.8 normalized dt dyn distance. For 6/18 tests, there
is a medium trace diversity as their dt dyn distributions lie in
the mid/left side of the plot. For the rest 8/18 tests we observe
a significantly smaller dt dyn distance.

This means that, in the context of this cryptographic library,
CROW is able to find variants that have a huge impact on the
dynamic stack behaviour of the program. Meanwhile, some
other replacements can have only a marginal impact during the
operation of the program. One factor that can affect this is the
“centrality” of the code that is being replaced. Diversified code
that is called often, potentially inside loops, will have a greater
impact on the stack trace of a program compared to code that
is only called, for example, only during the initialization of
the program.

When we compare the trace diversity against the diversity

due to pseudo-number generation (black triangles in Figure 3),
we observe that: for 2/18 tests CROW trace diversification is
always larger than the one due to random number generation,
for 11/18 tests there exist some variants that exhibit larger
trace diversification than random number generation and for
5/18 tests CROW trace diversification is always smaller than
the one due to random number generation.

Answer to RQ3

We have successfully applied CROW to libsodium, one
of the leading WebAssembly cryptography libraries.
We have shown that CROW is able to create statically
different variants of this real-world library, all of which
being distributable to users. Our original experiments
to measure the trace diversity of libsodium have proven
that the generated variants exhibit significantly differ-
ent execution traces compared to the original non-
diversified libsodium binary. The take-away of this
experiment is that CROW works on complex code.

VI. THREATS TO VALIDITY

Internal: The timeout in the exploration stage is a determi-
nant factor to generate unique variants. It is required to bound
the experimental time. If the timeout is increased, the number
of variants and unique variants might increase.

External: The 303 programs in our Rosetta corpus may not
reflect the constructs used in the WebAssembly programs in the
wild. Yet our experiment on libsodium shows that the results
on the Rosetta corpus hold on real code. To increase external
validity, we hope to see more benchmarks of WebAssembly
programs published by the research community.

Scale: We measure behavioral diversity with DTW. We are
aware that this behavioral diversity metric does not scale in-
finitely. To make comparisons between large execution traces,
it may be necessary to use a more scalable metric. To mitigate
this scale problem in future work, one option is to compare
software traces using entropy analysis, as proposed by Miran-
skyy et al. [33].

VII. RELATED WORK

Program diversification approaches can be applied at dif-
ferent stages of the development pipeline.

Static diversification: This kind of diversification consists
in synthesizing, building and distributing different, functionally
equivalent, binaries to end users. This aims at increasing the
complexity and applicability of an attack against a large popu-
lation of users [12]. Jackson et al. [24] argue that the compiler
can be placed at the heart of the solution for software diversi-
fication; they propose the use of multiple semantic-preserving
transformations to implement massive-scale software diversity
in which each user gets their own diversified variant. Dealing
with code-reuse attacks, Homescu et al. [23] propose inserting
NOP instruction directly in LLVM IR to generate a variant
with different code layout at each compilation. In this area,
Coppens et al. [13] use compiler transformations to iteratively
diversify software. The aim of their work is to prevent reverse
engineering of security patches for attackers targeting vulner-
able programs. Their approach, continuously applies a random

10

selection of predefined transformations using a binary diffing
tool as feedback. A downside of their method is that attackers
are, in theory, able to identify the type of transformations
applied and find a way to ignore or reverse them. Our work
can be extended to address this issue, providing a synthesizing
solution which is more general than specific transformations.

The work closest to ours is that by Jacob et al. [25].
These authors propose the use of a “superdiversification”
technique, inspired by superoptimization [32], to synthesize
individualized versions of programs. In the work of Massalin,
a superoptimizer aims to synthesize the shortest instruction
sequence that is equivalent to the original given sequence. On
the contrary, the tool developed by Jacob et al. does not output
only the shortest instruction sequence, but any sequences that
implement the input function. This work focuses on a specific
subset of X86 instructions. Meanwhile, our approach works
directly with LLVM IR, enabling it to generalize to more
languages and CPU architectures. Specifically, we apply our
tool on WebAssembly, something not possible with the X86-
specific approach of that paper.

Runtime diversification: Previous works have attempted to
generate diversified variants that are alternated during execu-
tion. It has been shown to drastically increase the number of
execution traces that a side-channel attack requires to succeed.
Amarilli et al. [3] are the first to propose generation of code
variants against side-channel attacks. Agosta et al. [1] and
Crane et al. [15] modify the LLVM toolchain to compile
multiple functionally equivalent variants to randomize the
control flow of software, while Couroussé et al. [14] implement
an assembly-like DSL to generate equivalent code at runtime
in order to increase protection against side-channel attacks.
CROW focuses on static diversification of software. However,
because of the specificities of code execution in the browser,
this is not far from being a dynamic approach. Since WebAs-
sembly is served at each page refreshment, every time a user
asks for a WebAssembly binary, she can be served a different
variant provided by CROW.

VIII. CONCLUSION

Security has been a major driver for the design of WebAs-
sembly. Diversification is one additional protection mechanism
that has been not yet realized for it. In this paper, we have
presented CROW, the first code diversification approach for
WebAssembly. We have shown that CROW is able to generate
variants for a large variety of programs, including a real-
world cryptographic library. Our original experiments have
comprehensively assessed the generated diversity: we have
shown that CROW generates diversity both among the binary
code variants as well as in the execution traces collected when
executing the variants. Also, we have successfully observed di-
verse execution traces for the considered cryptographic library,
which can protect it against a range of side channel attacks.

Future work includes increasing the number of unique
variants that are generated, by working on block replacement
overlapping detection. Also, the exploration stage and the
identification of code replacements is a highly parallelizable
process, this would increase diversification performance in
order to meet the demands of the internet scale.

REFERENCES

[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET ap-
proach: Securing cryptographic embedded software against side channel
attacks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 8, pp. 1320–1333, 2015.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. USA: Addison-Wesley Longman Publishing Co.,
Inc., 1986, ch. 1, pp. 28–31.

[3] A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy, and M. Tun-
stall, “Can code polymorphism limit information leakage?” in IFIP
International Workshop on Information Security Theory and Practices.
Springer, 2011, pp. 1–21.

[4] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: simpler, smaller, fast as MD5,” in International Conference
on Applied Cryptography and Network Security. Springer, 2013, pp.
119–135.

[5] B. Baudry and M. Monperrus, “The multiple facets of software diver-
sity: Recent developments in year 2000 and beyond,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, pp. 1–26, 2015.

[6] D. J. Bernstein, “The ChaCha family of stream ciphers,” 2008.
[Online]. Available: http://cr.yp.to/chacha.html

[7] ——, “The Salsa20 family of stream ciphers,” in New stream cipher
designs. Springer, 2008, pp. 84–97.

[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[9] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new generation of
memory-hard functions for password hashing and other applications,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 292–302.

[10] J. Cabrera Arteaga, M. Monperrus, and B. Baudry, “Scalable compari-
son of javascript V8 bytecode traces,” in Proceedings of the 11th ACM
SIGPLAN International Workshop on Virtual Machines and Interme-
diate Languages. New York, NY, USA: Association for Computing
Machinery, 2019, p. 22–31.

[11] D. Chen and W3C group, “WebAssembly documentation:
Security,” W3C, Accessed: 18 June 2020. [Online]. Available:
https://webassembly.org/docs/security/

[12] F. B. Cohen, “Operating system protection through program evolution.”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[13] B. Coppens, B. De Sutter, and J. Maebe, “Feedback-driven binary
code diversification,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1–26, 2013.

[14] D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J.-
L. Lanet, “Runtime code polymorphism as a protection against side
channel attacks,” in IFIP International Conference on Information
Security Theory and Practice. Springer, 2016, pp. 136–152.

[15] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity.” in
NDSS, 2015, pp. 8–11.

[16] A. Cui and S. J. Stolfo, “Symbiotes and defensive mutualism: Moving
target defense,” in Moving target defense. Springer, 2011, pp. 99–108.

[17] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[18] F. Denis, “The Sodium cryptography library,” Jun 2013. [Online].
Available: https://download.libsodium.org/doc/

[19] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings. The Sixth Workshop on Hot Topics in Oper-
ating Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

[20] R. Gurdeep Singh and C. Scholliers, “WARDuino: A dynamic WebAs-
sembly virtual machine for programming microcontrollers,” in Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, ser. MPLR 2019, 2019, pp.
27–36.

[21] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th

11

ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185–200.

[22] M. Hamburg, H. de Valance, I. Lovecruft, and T. Arcieri, “The ristretto
group,” 2017.

[23] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2013, pp. 1–11.

[24] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated
software diversity,” in Moving Target Defense. Springer, 2011, pp.
77–98.

[25] M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. N. Saw, and R. Venkate-
san, “The superdiversifier: Peephole individualization for software pro-
tection,” in International Workshop on Security. Springer, 2008, pp.
100–120.

[26] S. Josefsson, “The Base16, Base32, and Base64 data encodings,”
Internet Requests for Comments, RFC Editor, RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4648.txt

[27] B. Kaliski, “PKCS #5: Password-based cryptography specification
version 2.0,” Internet Requests for Comments, RFC Editor, RFC 2898,
September 2000, http://www.rfc-editor.org/rfc/rfc2898.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2898.txt

[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy,
2014, pp. 276–291.

[29] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14,
2014, p. 216–226.

[30] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new again:
Binary security of WebAssembly,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020.

[31] M. D. A. Maia, V. Sobreira, K. R. Paixão, R. A. D. Amo, and
I. R. Silva, “Using a sequence alignment algorithm to identify specific
and common code from execution traces,” in Proceedings of the 4th
International Workshop on Program Comprehension through Dynamic
Analysis (PCODA, 2008, pp. 6–10.

[32] H. Massalin, “Superoptimizer— A Look at the Smallest Program,” ACM
SIGPLAN Notices, vol. 22, no. 10, pp. 122–126, 10 1987.

[33] A. V. Miranskyy, M. Davison, R. M. Reesor, and S. S. Murtaza, “Using
entropy measures for comparison of software traces,” Information
Sciences, vol. 203, pp. 59–72, oct 2012.

[34] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” 2009.

[35] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling
up superoptimization,” SIGARCH Comput. Archit. News, vol. 44, no. 2,
p. 297–310, Mar. 2016.

[36] A. Rossberg, “WebAssembly Core Specification,” W3C, Tech. Rep.,
Dec. 2019. [Online]. Available: https://www.w3.org/TR/wasm-core-1/

[37] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address oblivious code reuse: On the effectiveness of
leakage resilient diversity,” in NDSS, 2017.

[38] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup, J. Taneja,
and J. Regehr, “Souper: A Synthesizing Superoptimizer,” arXiv preprint
1711.04422, 2017.

[39] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 54–65.

[40] M. Taguinod, A. Doupé, Z. Zhao, and G.-J. Ahn, “Toward a mov-
ing target defense for web applications,” in 2015 IEEE International
Conference on Information Reuse and Integration. IEEE, 2015, pp.
510–517.

[41] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proc. of the Int. Conf. on Depend-
able Systems and Networks (DSN). IEEE, 2001, pp. 193–202.

[42] R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of moving
target defense,” in Proceedings of the First ACM Workshop on Moving
Target Defense, 2014, pp. 31–40.

12

MULTI-VARIANT EXECUTION AT THE EDGE

Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit Baudry
Conference on Computer and Communications Security (CCS 2022), Workshop
on Moving Target Defense (MTD)

https://dl.acm.org/doi/abs/10.1145/3560828.3564007

151

https://dl.acm.org/doi/abs/10.1145/3560828.3564007

Multi-variant Execution at the Edge
JAVIER CABRERA-ARTEAGA, KTH Royal Institute of technology, Sweden
PIERRE LAPERDRIX, CNRS, France
MARTIN MONPERRUS, KTH Royal Institute of Technology, Sweden
BENOIT BAUDRY, KTH Royal Institute of Technology, Sweden

Edge-Cloud computing offloads parts of the computations that traditionally
occurs in the cloud to edge nodes. The binary format WebAssembly is
increasingly used to distribute and deploy services on such platforms. Edge-
Cloud computing providers let their clients deploy stateless services in
the form of WebAssembly binaries, which are then translated to machine
code, sandboxed and executed at the edge. In this context, we propose a
technique that (i) automatically diversifies WebAssembly binaries that are
deployed to the edge and (ii) randomizes execution paths at runtime. Thus,
an attacker cannot exploit all edge nodes with the same payload. Given a
service, we automatically synthesize functionally equivalent variants for the
functions providing the service. All the variants are then wrapped into a single
multivariant WebAssembly binary. When the service endpoint is executed,
every time a function is invoked, one of its variants is randomly selected. We
implement this technique in the MEWE tool and we validate it with 7 services
for which MEWE generates multivariant binaries that embed hundreds of
function variants. We execute the multivariant binaries on the world-wide
edge platform provided by Fastly, as part as a research collaboration. We show
that multivariant binaries exhibit a real diversity of execution traces across
the whole edge platform distributed around the globe.

Additional Key Words and Phrases: Diversification, Moving Target Defense,
Edge-Cloud computing, Multivariant execution, WebAssembly.

ACM Reference Format:
Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit
Baudry. 2022. Multi-variant Execution at the Edge. 1, 1 (August 2022), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Edge-Cloud computing distributes a part of the data and computation
to edge nodes [20, 56]. Edge nodes are servers located in many
countries and regions so that Internet resources get closer to the
end users, in order to reduce latency and save bandwidth. Video and
music streaming services, mobile games, as well as e-commerce and
news sites leverage this new type of cloud architecture to increase the
quality of their services. For example, the New York Times website
was able to serve more than 2 million concurrent visitors during
the 2016 US presidential election with no difficulty thanks to Edge
computing [4].

Authors’ addresses: Javier Cabrera-Arteaga, javierca@kth.se, KTH Royal Institute of
technology, Sweden; Pierre Laperdrix, pierre.laperdrix@inria.fr, CNRS, France; Martin
Monperrus, martin.monperrus@kth.se, KTH Royal Institute of Technology, Sweden;
Benoit Baudry, baudry@kth.se, KTH Royal Institute of Technology, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The state of the art of edge computing platforms like Cloudflare
or Fastly use the binary format WebAssembly (aka Wasm) [28, 57]
to deploy and execute on edge nodes. WebAssembly is a portable
bytecode format designed to be lightweight, fast and safe [17, 27].
After compiling code to a WebAssembly binary, developers spawn an
edge-enabled compute service by deploying the binary on all nodes
in an Edge platform. Thanks to its simple memory and computation
model, WebAssembly is considered safe [44], yet is not exempt of
vulnerabilities either at the execution engine’s level [54] or the
binary itself [38]. Implementations in both, browsers and standalone
runtimes [45], have been found to be vulnerable [38, 45]. This means
that if one node in an Edge network is vulnerable, all the others are
vulnerable in the exact samemanner. In other words, the same attacker
payload would break all edge nodes at once [46]. This illustrates how
Edge computing is fragile with respect to systemic vulnerabilities for
the whole network, like it happened on June 8, 2021 for Fastly [3].

In this work, we introduceMultivariant Execution forWebAssembly
in the Edge (MEWE), a framework that generates diversified
WebAssembly binaries so that no two executions in the edge network
are identical. Our solution is inspired by N-variant systems [23] where
diverse variants are assembled for secretless security. Here, our goal
is to drastically increase the effort for exploitation through large-scale
execution path randomization. MEWE operates in two distinct steps.
At compile time, MEWE generates variants for different functions
in the program. A function variant is semantically identical to the
original function but structurally different, i.e., binary instructions
are in different orders or have been replaced with equivalent ones. All
the function variants for one service are then embedded in a single
multivariant WebAssembly binary. At runtime, every time a function
is invoked, one of its variant is randomly selected. This way, the actual
execution path taken to provide the service is randomized each time
the service is executed, hardening Break-Once-Break-Everywhere
(BOBE) attacks.

We experiment MEWE with 7 services, composed of hundreds of
functions. We successfully synthesize thousands of function variants,
which create orders of magnitude more possible execution paths than
in the original service. To determine the runtime randomness of
the embedded paths, we deploy and run the mutlivariant binaries
on the Fastly edge computing platform (leading CDN platform).
We collaborated with Fastly to experiment MEWE on the actual
production edge computing nodes that they provide to their clients.
This means that all our experiments ran in a real-world setting. For
this experiment, we execute each multivariant binary several times
on every edge computing node provided by Fastly. Our experiment
shows that the multivariant binaries render the same service as the
original, yet with highly diverse execution traces.

The novelty of our contribution is as follows. First, we are the first
to perform software diversification in the context of edge computing,

, Vol. 1, No. 1, Article . Publication date: August 2022.

2 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

with experiments performed on a real-world, large-scale, commercial
edge computing platform (Fastly). Second, very fewworks have looked
at software diversity for WebAssembly [18, 45], our paper contributes
to proving the feasibility of this challenging endeavour.

To sum up, our contributions are:

• MEWE: a framework that builds multivariant WebAssembly
binaries for edge computing, combining the automatic synthesis
of semantically equivalent function variants, with execution
path randomization.

• Original results on the large-scale diversification
of WebAssembly binaries, at the function and execution path
levels.

• Empirical evidence of the feasibility of deploying our novel
multivariant execution scheme on a real-world edge-computing
platform.

• A publicly available prototype system, shared for future
research on the topic: https://github.com/Jacarte/MEWE.

This work is structured as follows. First, Section 2 present
a background on WebAssembly and its usage in an edge-cloud
computing scenario. Section 3 introduces the architecture and
foundation of MEWE while Section 4 and Section 5 present the
different experiments we conducted to show the feasibility of our
approach. Section 6 details the RelatedWork while Section 7 concludes
this paper.

2 BACKGROUND
In this section we introduce WebAssembly, as well as the deployment
model that edge-cloud platforms such as Fastly provide to their clients.
This forms the technical context for our work.

2.1 WebAssembly
WebAssembly is a bytecode designed to bring safe, fast, portable
and compact low-level code on the Web. The language was first
publicly announced in 2015 and formalized by Haas et al. [27]. Since
then, most major web browsers have implemented support for the
standard. Besides the Web, WebAssembly is independent of any
specific hardware, which means that it can run in standalone mode.
This allows for the adoption of WebAssembly outside web browsers
[17], e.g., for edge computing [45].

int f(int x) {

return 2 * x + x;

}

Listing 1. C function that calculates the quantity 2𝑥 + 𝑥

(module

(type (;0;) (func (param i32) (result i32)))

(func (;0;) (type 0) (param i32) (result i32)

local.get 0

local.get 0

i32.const 2

i32.mul

i32.add)

(export "f" (func 0)))

Listing 2. WebAssembly code for Listing 1.

WebAssembly binaries are usually compiled from source code like
C/C++ or Rust. Listing 1 and 2 illustrate an example of a C function
turned into WebAssembly. Listing 1 presents the C code of one
function and Listing 2 shows the result of compiling this function into
aWebAssembly module. TheWebAssembly code is further interpreted
or compiled ahead of time into machine code.

2.2 Web Assembly and Edge Computing
Using Wasm as an intermediate layer is better in terms of startup and
memory usage, than containerization or virtualization [32, 44]. This
has encouraged edge computing platforms like Cloudflare or Fastly
to adopt WebAssembly to deploy client applications in a modular and
sandboxed manner [28, 57]. In addition, WebAssembly is a compact
representation of code, which saves bandwidth when transporting
code over the network .
Client applications that are designed to be deployed on edge-

cloud computing platforms are usually isolated services, having one
single responsibility. This development model is known as serverless
computing, or function-as-a-service [45, 53]. The developers of a client
application implement the isolated services in a given programming
language. The source code and the HTTP harness of the service are
then compiled to WebAssembly. When client application developers
deploy a WebAssembly binary, it is sent to all edge nodes in the
platform. Then, the WebAssembly binary is compiled on each node to
machine code. Each binary is compiled in a way that ensures that the
code runs inside an isolated sandbox.

2.3 Multivariant Execution
In 2006, security researchers of University of Virginia have laid the
foundations of a novel approach to security that consists in executing
multiple variants of the same program. They called this “N-variant
systems” [23]. This potent idea has been renamed soon after as
“multivariant execution”.

There is a wide range of realizations of MVE in different contexts.
Bruschi et al. [16] and Salamat et al. [50] pioneered the idea of
executing the variants in parallel. Subsequent techniques focus on
MVE for mitigating memory vulnerabilities [31, 41] and other specific
security problems including return-oriented programming attacks
[58] and code injection [52]. A key design decision of MVE is whether
it is achieved in kernel space [47], in user-space [51], with exploiting
hardware features [36], or even throught code polymorphism [10].
Finally, one can neatly exploit the limit case of executing only two
variants [35, 43]. The body of research on MVE in a distributed setting
has been less researched. Notably, Voulimeneas et al. proposed a
multivariant execution system by parallelizing the execution of the
variants in different machines [59] for sake of efficiency.

In this paper, we propose an original kind of MVE in the context of
edge computing. We generate multiple program variants, which we
execute on edge computing nodes. We use the natural redundancy
of Edge-Cloud computing architectures to deploy an internet-based
MVE. Next section goes into the details of our procedure to generate
variants and assemble them into multivariant binaries.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 3

3 MEWE: MULTIVARIANT EXECUTION FOR EDGE
COMPUTING

In this section we present MEWE, a novel technique to synthesize
multivariant binaries and deploy them on an edge computing platform.

3.1 Overview
The goal of MEWE is to synthesize multivariant WebAssembly
binaries, according to the threat model presented in Section 3.2.1.
The tool generates application-level multivariant binaries, without
any change to the operating system or WebAssembly runtime. The
core idea of MEWE is to synthesize diversified function variants
providing execution-path randomization, according to the diversity
model presented in Section 3.2.2.

In Figure 1, we summarize the analysis and transformation pipeline
of MEWE. We pass a bitcode to be diversified, as an input to MEWE.
Analysis and transformations are performed at the level of LLVM’s
intermediate representation (LLVM IR), as it is the best format for us
to perform our modifications (see Section 3.2.3). LLVM binaries can be
obtained from any language with an LLVM frontend such as C/C++,
Rust or Go, and they can easily be compiled to WebAssembly. In
Step 1 , the binary is passed to CROW [18], which is a superdiversifier
forWasm that generates a set of variants for the functions in the binary.
Step 2 packages all the variants in one single multivariant LLVM
binary. In Step 3 , we use a special component, called a “mixer”,
which augments the binary with two different components: an HTTP
endpoint harness and a random generator, which are both required
for executing Wasm at the edge. The harness is used to connect the
program to its execution environment while the generator provides
support for random execution path at runtime. The final output of
Step 4 is a standalone multivariant WebAssembly binary that can
be deployed on an edge-cloud computing platform. In the following
sections, we describe in greater details the different stages of the
workflow.

3.2 Key design choices
In this section, we introduce the main design decisions behind MEWE,
starting from the threat model, to aligning the code analysis and
transformation techniques.

3.2.1 Threat Model. As we describe in Section 2.2, to benefit from the
performance improvements offered by edge computing, developers
modularize their services into a set of WebAssembly functions. The
binaries are then deployed on all the nodes provided by the edge
computing platforms. However, this model of distributing the exact
same WebAssembly binary on hundreds of computation nodes is a
serious risk for the infrastructure: a malicious developer who manages
to exploit one vulnerability in one edge location can exploit all the
other locations with the same attack vector.
With MEWE, we aim to defend against an attacker that perform

BOBE attacks. These attacks include but are not limited to timing
specific operations [6, 11], counting register spill/reload operations
to study and exploit memory [48] and performing call stack analysis.
They can be performed either locally or remotely by finding a
vulnerability or using shared resources in the case of a multi-tenant
Edge computing server but the details of such exploitation are out of
scope of this study.

3.2.2 Execution Diversification Model. MEWE is
designed to randomize the execution of WebAssembly programs, via
diversification transformations. Per Crane et al. those transformations
are made to hinder side-channel attacks [24]. All programs are
diversified with behavior preservation guarantees [18]. The core
diversification strategies are: (1) Constant Inferring. MEWE identifies
variables whose value can computed at compile time and are used to
control branches. This has an effect on program execution times [15].
(2) Call Stack Randomization. MEWE introduces equivalent synthetic
functions that are called randomly. This results in randomized call
stacks, which complicates attacks based on call stack analysis [40].
(3) Inline Expansion. MEWE inlines methods when appropriate. This
also results in different call stacks, to hinder the same kind of attacks
as for call stack randomization [40]. (4) Spills/Reloads. By performing
semantically equivalent transformations for arithmetic expressions,
the number of register spill/reload operations changes. Therefore, this
changes the memory accesses in the machine code that is executed,
affecting the measurement of memory side-channels [48].

3.2.3 Diversification at the LLVM level. MEWE diversifies programs
at the LLVM level. Other solutions would have been to diversify
at the source code level [8], or at the native binary level, eg x86
[22]. However, the former would limit the applicability of our work.
The latter is not compatible with edge computing: the top edge
computing execution platforms, e.g. Cloudflare and Fastly, mostly
take WebAssembly binaries as input.
LLVM, on the contrary, does not suffer from those limitations: 1)

it supports different languages, with a rich ecosystem of frontends
2) it can reliably be retargeted to WebAssembly, thanks to the
corresponding mature component in the LLVM toolchain.

3.3 Variant generation
MEWE relies on the superdiversifier CROW [18] to automatically
diversify each function in the input LLVM binary (Step 1). CROW
receives an LLVM module, analyzes the binary at the function block
level and generates semantically equivalent variants for each function,
if they exist. A function variant for MEWE is semantically equivalent
to the original (i.e., same input/output behavior), but exhibits a
different internal behavior through tracing. Since the variants created
by CROW are artificially synthesized from the original binary, after
Step 1 , they are necessarily equivalent to the original program.

3.4 Combining variants into multivariant functions
Step 2 of MEWE consists in combining the variants generated for
the original functions, into into a single binary. The goal is to support
execution-path randomization at runtime. The core idea is to introduce
one dispatcher function per original function for which we generate
variants. A dispatcher function is a synthetic function that is in charge
of choosing a variant at random, every time the original function is
invoked during the execution. The random invocation of different
variants at runtime is a known randomization technique, for example
used by Lettner et al. with sanitizers [39].
With the introduction of dispatcher function, MEWE turns the

original call graph into a multivariant call graph, defined as follows.

, Vol. 1, No. 1, Article . Publication date: August 2022.

4 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

LLVM Original
binary

function1

functionn

CROW

function1function1function1function1

function1function1function1
functionn

Multivariant
Generation

LLVM Multivariant
binary

function1function1function1functionn

function1function1function1function1

Random
generator

HTTP endpoint
harness

MIXER
Wasm

multivariant
binary

1 2

34

Fig. 1. Overview of MEWE. It takes as input the LLVM binary representation of a service composed of multiple functions. It first generates a set of functionally
equivalent variants for each function in the binary and then generates a LLVM multivariant binary composed of all the function variants as well as dispatcher
functions in charge of selecting a variant when a function is invoked. The MEWE mixer composes the LLVM multivariant binary with a random number generation
library and an edge specific HTTP harness, in order to produce a WebAssembly multivariant binary accessible through an HTTP endpoint and ready to be deployed
to the edge.

Fig. 2. Example of two static call graphs for the bin2base64 endpoint of
libsodium. At the top, the original call graph, at the bottom, the multivariant
call graph, which includes nodes that represent function variants (in grey),
dispatchers (in green), and original functions (in yellow).

Definition 1. Multivariant Call Graph (MCG): A multivariant call
graph is a call graph ⟨𝑁, 𝐸⟩ where the nodes in 𝑁 represent all the
functions in the binary and an edge (𝑓1, 𝑓2) ∈ 𝐸 represents a possible
invocation of 𝑓2 by 𝑓1 [49], where the nodes are typed. The nodes in 𝑁
have three possible types: a function present in the original program, a
generated function variant, or a dispatcher function.

In Figure 2, we show the original static call graph for program
bin2base64 (top of the figure), as well as the multivariant call graph
generated with MEWE (bottom of the figure). The grey nodes
represent function variants, the green nodes function dispatchers
and the yellow nodes are the original functions. The possible calls are
represented by the directed edges. The original bin2base64 includes 3
functions. MEWE generates 43 variants for the first function, none
for the second and three for the third function. MEWE introduces two
dispatcher nodes, for the first and third functions. Each dispatcher is
connected to the corresponding function variants, in order to invoke
one variant randomly at runtime.

The right most green node of Figure 2 is a function constructed as
follows (See code in Appendix A). The function body first calls the
random generator, which returns a value that is then used to invoke a

specific function variant. It should be noted that the dispatcher func-
tion is constructed using the same signature as the original function.
We implement the dispatchers with a switch-case structure to

avoid indirect calls that can be susceptible to speculative execution
based attacks [45]. The choice of a switch-case also avoids having
multiple function definitions with the same signature, which could
increase the attack surface in case the function signature is vulnerable
[33]. This also allows MEWE to inline function variants inside the
dispatcher, instead of defining them again. Here we trade security
over performance, since dispatcher functions that perform indirect
calls, instead of a switch-case, could improve the performance of the
dispatchers as indirect calls have constant time.
3.5 MEWE’s Mixer
The MEWE mixer has four specific objectives: wrap functions as
HTTP endpoints, link the LLVM multivariant binary, inject a ran-
dom generator and merge all these components into a multivariant
WebAssembly binary.

We use the Rustc compiler1 to orchestrate the mixing. For the
generator, we rely onWASI’s specification [5] for the random behavior
of the dispatchers. Its exact implementation is dependent on the
platform on which the binary is deployed. For the HTTP harnesses,
since our edge computing use case is based on the Fastly infrastructure,
we rely on the Fastly API2 to transform our Wasm binaries into HTTP
endpoints. The harness enables a function to be called as an HTTP
request and to return a HTTP response. Throughout this paper, we
refer to an endpoint as the closure of invoked functions when the
entry point of the WebAssembly binary is executed.

3.6 Implementation
The multivariant combination (Step 2) is implemented in 942
lines of C++ code. Its uses the LLVM 12.0.0 libraries to extend the
LLVM standard linker tool capability with the multivariant generation.

1https://doc.rust-lang.org/rustc/what-is-rustc.html
2https://docs.rs/crate/fastly/0.7.3

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 5

MEWE’s Mixer (Step 3) is implemented as an orchestration of
the rustc and the WebAssembly backend provided by CROW. An
instantiation of how the multivariant binary works can be appreciated
at Appendix B. For sake of open science and for fostering research on
this important topic, the code of MEWE is made publicly available on
GitHub: https://github.com/Jacarte/MEWE.

4 EXPERIMENTAL METHODOLOGY
In this section we introduce our methodology to evaluate MEWE. First,
we present our research questions and the services with which we
experiment the generation and the execution of multivariant binaries.
Then, we detail the methodology for each research question.

4.1 Research questions
To evaluate the capabilities of MEWE, we formulate the following
research questions:
RQ1: (Multivariant Generation) How much diversity can

MEWE synthesize and embed in a multivariant binary
?MEWE packages function variants in multivariant binaries.
With this first question, we aim at measuring the amount of
diversity that MEWE can synthesize in the call graph of a
program.

RQ2: (Intra MVE) To what extent does MEWE achieve multi-
variant executions on an edge compute node? With this
question we assess the ability of MEWE to produce binaries
that actually exhibit random execution paths when executed
on one edge node.

RQ3: (Internet MVE) To what extent does MEWE achieve
multivariant execution over the worldwide Fastly in-
frastructure? We check the diversity of execution traces
gathered from the execution of a multivariant binary. The
traces are collected from all edge nodes in order to assess MVE
at a worldwide scale.

RQ4: What is the impact of the proposed multi-version exe-
cution on timing side-channels?MEWE generates binaries
that embed a multivariant behavior. We measure to what
extent MEWE generates different execution times on the edge.
Then, we discuss how multivariant binaries contribute to less
predictable timing side-channels.

The core of the validation methodology for our tool MEWE, consists
in building multivariant binaries for several, relevant endpoints and
to deploy and execute them on the Fastly edge-cloud platform.

4.2 Study subjects
We select two mature and typical edge-cloud computing projects to
study the feasibility of MEWE. The projects are selected based on:
suitability for diversity synthesis with CROW (the projects should
have the ability to collect their modules in LLVM intermediate rep-
resentation), suitability for deployment on the Fastly infrastructure
(the project should be easily portable Wasm/WASI and compatible
with the Rust Fastly API), low chances to hit execution paths with no
dispatchers and possibility to collect their execution runtime informa-
tion (the endpoints should execute in a reasonable time of maximum
1 second even with the overhead of instrumentation). The selected
projects are: libsodium, an encryption, decryption, signature and

password hashing library which can be ported to WebAssembly and
qrcode-rust, a QrCode and MicroQrCode generator written in Rust.

Name #Endpoints #Functions #Instr.
libsodium 5 62 6187
https://github.com/
jedisct1/libsodium
qrcode-rust 2 1840 127700
https://github.com/
kennytm/qrcode-rust

Table 1. Selected projects to evaluate MEWE: project name; the number
of endpoints in the project that we consider for our experiments, the total
number of functions to implement the endpoints, and the total number of
WebAssembly instructions in the original binaries.

In Table 1, we summarize some key metrics that capture the
relevance of the selected projects. The table shows the project name
with its repository address, the number of selected endpoints for
which we build multivariant binaries, the total number of functions
included in the endpoints and the total number of Wasm instructions
in the original binary. Notice that, the metadata is extracted from
the Wasm binaries before they are sent to the edge-cloud computing
platform, thus, the number of functions might be not the same in the
static analysis of the project source code

4.3 Experiment’s platform
We run all our experiments on the Fastly edge computing platform.
We deploy and execute the original and the multivariant endpoints
on 64 edge nodes located around the world3. These edge nodes
usually have an arbitrary and heterogeneous composition in terms
of architecture and CPU model. The deployment procedure is the
same as the one described in Section 2.2. The developers implement
and compile their services to WebAssembly. In the case of Fastly,
the WebAssembly binaries need to be implemented with the Fastly
platform API specification so they can properly deal with HTTP
requests. When the compiled binary is transmitted to Fastly, it is
translated to x86 machine code with Lucet, which ensures the isolation
of the service.

4.4 RQ1 Multivariant diversity
We run MEWE on each endpoint function of our 7 endpoints. In this
experiment, we bound the search for function variant with timeout
of 5 minutes per function. This produces one multivariant binary for
each endpoint. To answer RQ1, we measure the number of function
variants embedded in each multivariant binary, as well as the number
of execution paths that are added in themutivariant call graphs, thanks
to the function variants.

4.5 RQ2 Intra MTD
We deploy the multivariant binaries of each of the 7 endpoints
presented in Table 2, on the 64 edge nodes of Fastly. We execute
each endpoint, multiple times on each node, to measure the diversity
of execution traces that are exhibited by the multivariant binaries.
We have a time budget of 48 hours for this experiment. Within this
3The number of nodes provided in the whole platform is 72, we decided to keep only the
64 nodes that remained stable during our experimentation.

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

timeframe, we can query each endpoint 100 times on each node. Each
query on the same endpoint is performed with the same input value.
This is to guarantee that, if we observe different traces for different
executions, it is due to the presence of multiple function variants. The
input values are available as part of our reproduction package.

For each query, we collect the execution trace , i.e., the sequence of
function names that have been executed when triggering the query.
To observe these traces, we instrument the multivariant binaries to
record each function entrance.

To answer RQ2, we measure the number of unique execution traces
exhibited by each multivariant binary, on each separate edge node. To
compare the traces, we hash them with the sha256 function. We then
calculate the number of unique hashes among the 100 traces collected
for an endpoint on one edge node. We formulate the following
definitions to construct the metric for RQ3.

Metric 1. Unique traces: 𝑅(𝑛, 𝑒). Let 𝑆 (𝑛, 𝑒) = {𝑇1,𝑇2, ...,𝑇100} be
the collection of 100 traces collected for one endpoint 𝑒 on an edge node
𝑛, 𝐻 (𝑛, 𝑒) the collection of hashes of each trace and 𝑈 (𝑛, 𝑒) the set of
unique trace hashes in 𝐻 (𝑛, 𝑒). The uniqueness ratio of traces collected
for edge node 𝑛 and endpoint 𝑒 is defined as

𝑅 (𝑛, 𝑒) = |𝑈 (𝑛, 𝑒) |
|𝐻 (𝑛, 𝑒) |

The inputs that we pass to execute the endpoints at the edge and
the received output for all executions are available in the reproduction
repository at https://github.com/Jacarte/MEWE.

4.6 RQ3 Inter MTD
We answer RQ3 by calculating the normalized Shannon entropy for all
collected execution traces for each endpoint. We define the following
metric.

Metric 2. Normalized Shannon entropy: 𝐸 (𝑒) Let 𝑒 be an endpoint,
𝐶 (𝑒) = ·64𝑛=0𝐻 (𝑛, 𝑒) be the union of all trace hashes for all edge nodes.
The normalized Shannon Entropy for the endpoint 𝑒 over the collected
traces is defined as:

𝐸 (𝑒) = −Σ 𝑝𝑥 ∗ 𝑙𝑜𝑔 (𝑝𝑥)
𝑙𝑜𝑔 (|𝐶 (𝑒) |)

Where 𝑝𝑥 is the discrete probability of the occurrence of the hash 𝑥
over 𝐶 (𝑒).
Notice that we normalize the standard definition of the Shannon

Entropy by using the perfect case where all trace hashes are different.
This normalization allows us to compare the calculated entropy
between endpoints. The value of the metric can go from 0 to 1. The
worst entropy, value 0, means that the endpoint always perform the
same path independently of the edge node and the number of times
the trace is collected for the same node. On the contrary, 1 for the
best entropy, when each edge node executes a different path every
time the endpoint is requested.
The Shannon Entropy gives the uncertainty in the outcome of a

sampling process. If a specific trace has a high frequency of appearing
in part of the sampling, then it is certain that this trace will appear in
the other part of the sampling.

We calculate the metric for the 7 endpoints, for 100 traces collected
from 64 edge nodes, for a total of 6400 collected traces per endpoint.
Each trace is collected in a round robin strategy, i.e., the traces are
collected from the 64 edge nodes sequentially. For example, we collect

the first trace from all nodes before continuing to the collection of the
second trace. This process is followed until 100 traces are collected
from all edge nodes.

4.7 RQ4 Timing side-channels
For each endpoint listed in Table 2, we measure the impact of MEWE
on timing. For this, we use the following metric:

Metric 3. Execution time: For a deployed binary on the edge, the
execution time is the time spent on the edge to execute the binary.

Note that edge-computing platforms are, by definition, reached
from the Internet. Consequently, there may be latency in the timing
measurement due to round-trip HTTP requests. This can bias the
distribution of measured execution times for the multivariant binary.
To avoid this bias, we instrument the code to only measure the
execution on the edge nodes.
We collect 100k execution times for each binary, both the original

and multivariant binaries. We perform a Mann-Withney U test [42]
to compare both execution time distributions. If the P-value is lower
than 0.05, two compared distributions are different.

5 EXPERIMENTAL RESULTS

5.1 RQ1 Results: Multivariant generation
We use MEWE to generate a multivariant binary for each of the 7
endpoints included in our 2 study subjects. We then calculate the
number of diversified functions, in each endpoint, as well as how they
combine to increase the number of possible execution paths in the
static call graph for the original and the multivariant binaries.
The sections ’Original binary’ and ’Multivariant WebAssembly

binary’ of Table 2 summarize the key data for RQ1. In the ’Original
binary’ section, the first column (#F) gives the number of functions in
the original binary and the second column (#Paths) gives the number
of possible execution paths in the original static call graph. The
’Multivariant WebAssembly binary’ section first shows the number
of each type of nodes in the multivariant call graph: #Non div. is
the number of original functions that could not be diversified by
MEWE, #D is the number of dispatcher nodes generated by MEWE
for each function that was successfully diversified, and #V is the total
number of function variants generated by MEWE. The last column
of this section is the number of possible execution paths in the static
multivariant call graph.

For all 7 endpoints, MEWE was able to diversify several functions
and to combine them in order to increase the number of possible ex-
ecution paths in several orders of magnitude. For example, in the case
of the encrypt function of libsodium, the original binary contains 23
functions that can be combined in 4 different paths. MEWE generated
a total of 56 variants for 5 of the 23 functions. These variants, combined
with the 18 original functions in the multivariant call graph, form
325 execution paths. In other words, the number of possible ways to
achieve the same encryption function has increased from 4 to 325, in-
cluding dispatcher nodes that are in charge of randomizing the choice
of variants at 5 different locations of the call graph. This increased
number of possible paths, combined with random choices, made at
runtime, increases the effort a potential attacker needs to guess what
variant is executed and hence what vulnerability she can exploit.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 7

Original binary Multivariant WebAssembly binary
Endpoint #F #Paths #Non D #D #V #Paths
libsodium
encrypt 23 4 18 5 56 325
decrypt 20 3 16 5 49 84
random 8 2 6 2 238 12864
invert 8 2 6 2 125 2784
bin2base64 3 2 1 2 47 172
qrcode-rust
qr_str 982 688∗106 965 17 2092 97∗1012
qr_image 858 1.4∗106 843 15 2063 3∗109

Table 2. Static diversity generated by MEWE, measured on the static call
graphs of the WebAssembly binaries, and the preservation of this diversity
after translation to machine code. The table is structured as follows: Endpoint
name; number of functions and numbers of possible paths in the original
WebAssembly binary call graph; number of non diversified functions, number
of created dispatchers (one per diversified functions), total number of function
variants and number of execution paths in the multivariant WebAssembly
binary call graph.

We have observed that there is no linear correlation between the
number of diversified functions, the number of generated variants
and the number of execution paths. We have manually analyzed the
endpoint with the largest number of possible execution paths in the
multivariant Wasm binary: qr_str of qrcode-rust. MEWE generated
2092 function variants for this endpoint. Moreover, MEWE inserted
17 dispatchers in the call graph of the endpoint. For each dispatcher,
MEWE includes between 428 and 3 variants. If the original execution
path contains function for which MEWE is able to generate variants,
then, there is a combinatorial explosion in the number of execution
paths for the generated Wasm multivariant module. The increase of
the possible execution paths theoretically augments the uncertainty
on which one to perform, in the latter case, approx. 140 000 times. As
Cabrera and colleagues observed [18] for CROW, a large presence of
loops and arithmetic operations in the original function code leverages
to more diversification.
Looking at the #D (#Dispatchers) and #V (#Variants) columns of

the ’Multivariant WebAssembly binary’ section of Table 2, we notice
that the number of variants generated per function greatly varies.
For example, for both the invert and the bin2base64 functions of
Libsodium, MEWE manages to diversify 2 functions (reflected by the
presence of 2 dispatcher nodes in the multivariant call graph). Yet,
MEWE generates a total of 125 variants for the 2 functions in invert,
and only 47 variants for the 2 functions in bin2base64. The main
reason for this is related to the complexity of the diversified functions,
which impacts the opportunities for the synthesis of code variations.

Columns #Non D of the ’Multivariant WebAssembly binary’ section
of Table 2 indicates that, in each endpoint, there exists a number of
functions for which MEWE did not manage to generate variants.
We identify three reasons for this, related to the diversification
procedure of CROW, used by MEWE to diversify individual functions.
First, some functions cannot be diversified by CROW, e.g., functions
that wrap only memory operations, which are oblivious to CROW
diversification technique. Second, the complexity of the function
directly affects the number of variants that CROW can generate.
Third, the diversification procedure of CROW is essentially a search
procedure, which results are directly impacted by the tie budget for
the search. In all experiments we give CROW 5 minutes maximum to
synthesize function variants, which is a low budget for many functions.
It is important to notice that, the successful diversification of some
functions in each endpoint, and their combination within the call

graph of the endpoint, dramatically increases the number of possible
paths that can triggered for multivariant executions.
Answer to RQ1: MEWE dramatically increases the number
of possible execution paths in the multivariant WebAssembly
binary of each endpoint. The large number of possible execution
paths, combined with multiple points of random choice in the
multivariant call graph thwart the prediction of which path will
be taken at runtime.

5.2 RQ2 Results: Intra MTD
To answer RQ2, we execute the multivariant binaries of each endpoint,
on the Fastly edge-cloud infrastructure. We execute each endpoint
100 times on each of the 64 Fastly edge nodes. All the executions of
a given endpoint are performed with the same input. This allows us
to determine if the execution traces are different due to the injected
dispatchers and their random behavior. After each execution of an
endpoint, we collect the sequence of invoked functions, i.e., the
execution trace. Our intuition is that the random dispatchers combined
with the function variants embedded in a multivariant binary are very
likely to trigger different traces for the same execution, i.e., when
an endpoint is executed several times in a row with the same input
and on the same edge node. The way both the function variants and
the dispatchers contribute to exhibiting different execution traces is
illustrated in Figure 6.

Figure 3 shows the ratio of unique traces exhibited by each endpoint,
on each of the 64 separate edge nodes. The X corresponds to the edge
nodes. The Y axis gives the name of the endpoint. In the plot, for a
given (x,y) pair, there is blue point in the Z axis representing Metric 1
over 100 execution traces.

For all edge nodes, the ratio of unique traces is above 0.38. In 6 out
of 7 cases, we have observed that the ratio is remarkably high, above
0.9. These results show that MEWE generates multivariant binaries
that can randomize execution paths at runtime, in the context of an
edge node. The randomization dispatchers, associated to a significant
number of function variants greatly reduce the certainty about which
computation is performed when running a specific input with a given
input value.
Let’s illustrate the phenomenon with the endpoint invert. The

endpoint invert receives a vector of integers and returns its inversion.
Passing a vector of integers with 100 elements as input, 𝐼 = [100, ..., 0],
results in output 𝑂 = [0, ..., 100]. When the endpoint executes 100
times with the same input on the original binary, we observe 100
times the same execution trace. When the endpoint is executed 100
times with the same input 𝐼 on the multivariant binary, we observe
between 95 and 100 unique execution traces, depending on the edge
node. Analyzing the traces we observe that they include only two
invocations to a dispatcher, one at the start of the trace and one at the
end. The remaining events in the trace are fixed each time the endpoint
is executed with the same input 𝐼 . Thus, the maximum number of
possible unique traces is the multiplication of the number of variants
for each dispatcher, in this case 29 × 96 = 2784 . The probability of
observing the same trace is 1/2784.
For multivariant binaries that embed only a few variants, like in

the case of the bin2base64 endpoint, the ratio of unique traces per
node is lower than for the other endpoints. With the input we pass to

, Vol. 1, No. 1, Article . Publication date: August 2022.

8 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

Edge nodes

n0
n1

n2
n3

n4
n5

n6
n7

n8
n9

n10
n11

n12
n13

n14
n15

n16
n17

n18
n19

n20
n21

n22
n23

n24
n25

n26
n27

n28
n29

n30
n31

n32
n33

n34
n35

n36
n37

n38
n39

n40

n41

n42

n43

n44

n45

n46

n47

n48

n49

n50

n51

n52

n53

n54

n55

n56

n57

n58

n59

n60

n61

n62

n63 bin2base64

decrypt

encrypt

.invert

random

qr str

qr image

U
n

iq
u

e
tr

ac
es

ra
ti

o

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fig. 3. Ratio of unique execution traces for each endpoint on each edge node.
The X axis illustrates the edge nodes. The Y axis annotates the name of the
endpoint. In the plot, for a given (x,y) pair, there is blue point representing the
Metric 1 value in a set of 100 collected execution traces.

bin2base64, the execution trace includes 57 function calls. We have
observed that, only one of these calls invokes a dispatcher, which
can select among 41 variants. Thus, probability of having the same
execution trace twice is 1/41.
Meanwhile, qr_str embeds thousands of variants, and the input

we pass triggers the invocation of 3M functions, for which 210666
random choices are taken relying on 17 dispatchers. Consequently,
the probability of observing the same trace twice is infinitesimal.
Indeed, all the executions of qr_str are unique, on each separate
edge node. This is shown in Figure 3, where the ratio of unique traces
is 1 on all edge nodes.
Answer to RQ2: Repeated executions of a multivariant binary
with the same input on an individual edge node exhibits diverse
execution traces. MEWE successfully synthesizes multivariant
binaries that trigger diverse execution paths at runtime, on
individual edge nodes.

5.3 RQ3 Results: Internet MTD
To answer RQ3, we build the union of all the execution traces collected
on all edge nodes for a given endpoint. Then, we compute the
normalized Shannon Entropy over this set for each endpoint (Metric 2).
Our goal is to determine whether the diversity of execution traces
we observed on individual nodes in RQ3, actually generalizes to the
whole edge-cloud infrastructure. Depending on many factors, such
as the random number generator or a bug in the dispatcher, it could
happen that we observe different traces on individual nodes, but that
the set of traces is the same on all nodes. With RQ4 we assess the
ability of MEWE to exhibit multivariant execution at a global scale.

Table 3 provides the data to answer RQ3. The second column gives
the normalized Shannon Entropy value (Metric 2). Columns 3 and 4
give the median and the standard deviation for the length of the exe-
cution traces. Columns 5 and 6 give the number of dispatchers that are
invoked during the execution of the endpoint (#ED) and the total num-
ber of invocations of these endpoints (#Rch). These last two columns
indicate to what extent the execution paths are actually randomized
at runtime. In the cases of invert and random, both have the same

Endpoint Entropy MTL 𝜎 #ED #RCh
libsodium
encrypt 0.87 816 0 5 4M
decrypt 0.96 440 0 5 2M
random 0.98 15 5 2 12800
invert 0.87 7343 0 2 12800
bin2base64 0.42 57 0 1 6400
qrcode-rust
qr_str 1.00 3045193 0 17 1348M
qr_image 1.00 3015450 0 15 1345M

Table 3. Execution trace diversity over the Fastly edge-cloud computing
platform. The table is formed of 6 columns: the name of the endpoint, the
normalized Shannon Entropy value (Metric 2), the median size of the execution
traces (MTL), the standard deviation for the trace lengths the number of
executed dispatchers (#ED) and the number of total random choices taken
during all the 6400 executions (#RCh).

number of taken random choices. However, the number of variants to
chose in random are larger, thus, the entropy, is larger than invert.
Overall, the normalized Shannon Entropy is above 42%. This is

evidence that the multivariant binaries generated by MEWE can
indeed exhibit a high degree of execution trace diversity, while keeping
the same functionality. The number of randomization points along
the execution paths (#Rch) is at the core of these high entropy values.
For example, every execution of the encrypt endpoint triggers 4M
random choices among the different function variants embedded in
the multivariant binaries. Such a high degree of randomization is
essential to generate very diverse execution traces.
The bin2base64 endpoint has the lowest level of diversity. As

discussed in RQ2, this endpoint is the one that has the least variants
and its execution path can be randomized only at one point. The low
level of unique traces observed on individual nodes is reflected at the
system wide scale with a globally low entropy.

For both qr_str and qr_image the entropy value is 1.0. This means
that all the traces that we observe for all the executions of these
endpoints are different from each other. In other words, someone
who runs these services over and over with the same input cannot
know exactly what code will be executed in the next execution. These
very high entropy values are made possible by the millions of random
choices that are made along the execution paths of these endpoints.

While there is a high degree of diversity among the traces exhibited
by each endpoint, they all have the same length, except in the case
of random. This means that the entropy is a direct consequence of
the invocations of the dispatchers. In the case of random, it naturally
has a non-deterministic behavior. Meanwhile, we observe several
calls to dispatchers in during the execution of the multivariant
binary, which indicates that MEWE can amplify the natural diversity
of traces exhibited by random. For each endpoint, we managed to
trigger all dispatchers during its execution. There is a correlation
between the entropy and the number of random choices (Column
#RChs) taken during the execution of the endpoints. For a high
number of dispatchers, and therefore random choices, the entropy
is large, like the cases of qr_str and qr_image show. The contrary
happens to bin2base64 where its multivariant binary contains only
one dispatcher.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 9

Original bin. Multivariant Wasm
Endpoint Median (`s) 𝜎 Median (`s) 𝜎

libsodium
encrypt 7 5 217 43
decrypt 13 6 225 47
random 16 7 232 53
invert 119 34 341 65
bin2base64 10 5 215 35
qrcode-rust
qr_str 3,117 418 492,606 36,864
qr_image 3,091 412 512,669 41,718

Table 4. Execution time distributions for 100k executions, for the original
endpoints and their correspondingmultivariants. The table is structured in two
sections. The first section shows the endpoint name, themedian execution time
and its standard deviation for the original endpoint. The second section shows
the median execution time and its standard deviation for the multivariant
WebAssembly binary.

Answer to RQ3: At the internet scale of the Edge platform, the
multivariant binaries synthesized by MEWE exhibit a massive
diversity of execution traces, while still providing the original
service. It is virtually impossible for an attacker to predict which
is taken for a given query.

5.4 RQ4 Results: Timing side-channels
For each endpoint used in RQ1, we compare the execution time
distributions for the original binary and the multivariant binary. All
distributions are measured on 100k executions. In Table 4, we show
the execution time for the original endpoints and their corresponding
multivariant. The table is structured in two sections. The first section
shows the endpoint name, the median and standard deviation of
the original endpoint. The second section shows the median and
the standard deviation for the execution time of the corresponding
multivariant binary.

We also observe that the distributions for multivariant binaries have
a higher standard deviation of execution time. A statistical comparison
between the execution time distributions confirms the significance
of this difference (P-value = 0.05 with a Mann-Withney U test). This
hints at the fact that the execution time for multivariant binaries is
more unpredictable than the time to execute the original binary.
In Figure 4, each subplot represents the distribution for a single

endpoint, with the colors blue and green representing the original and
multivariant binary respectively. These plots reveal that the execution
times are indeed spread over a larger range of values compared to the
original binary. This is evidence that execution time is less predictable
for multivariant binaries than for the original ones.
We evaluate to what extent a specific variant can be detected by

observing the execution time distribution. This evaluation is based
on the measurement with one endpoint. For this, we choose endpoint
bin2base64 because it is the end point that has the least variants and
the least dispatchers, which is the most conservative assumption.
We dissect the collected execution times for the bin2base64 end-

point, grouping them by execution path. In Figure 5, each opaque curve
represents a cumulative execution time distribution of a unique execu-
tion path out of the 41 observed. We observe that no specific distribu-
tion is remarkably different from another one. Thus, no specific variant
can be inferred out of the projection of all execution times like the ones
presented in Figure 4. Nevertheless, we calculate a Mann-Whitney

test for each pair of distributions, 41 × 41 pairs. For all cases, there is
no statistical evidence that the distributions are different, 𝑃 > 0.05.
Recall that the choice of function variant is randomized at each

function invocation, and the variants have different execution times
as a consequence of the code transformations, i.e., some variants
execute more instructions than others. Consequently, attacks relying
on measuring precise execution times of a function are made a lot
harder to conduct as the distribution for the multivariant binary is
different and even more spread than the original one.

We evaluate the impact of multivariant binaries on execution time.
As a baseline, we consider the evaluation proposed by Fastly [1, 2]:
a Markdown to HTML conversion service shall run on their edge
platform and return a response in less than 100 ms, allowing one
request for every single keystroke. In this context, all the multivariant
binaries for Libsodium match the baseline and still support requests
at the speed of keystrokes. The multivariant binaries for QR encoding
respond in a reasonable time for end users, i.e., in less than half a
second, but are below the baseline. In general, we note that the
execution times are slower for multivariant binaries. Being under 500
ms in general, this does not represent a threat to the applicability of
multivariant execution at the edge. Yet, it calls for future optimization
research.
Answer to RQ4: The execution time distributions are
significantly different between the original and the multivariant
binary. Furthermore, no specific variant can be inferred from
execution times gathered from the multivariant binary. MEWE
contributes to mitigate potential attacks based on predictable
execution times.

6 RELATED WORK
Our work is in the area of software diversification for security, a
research field discovered by researchers Forrest [26] and Cohen [21].
We contribute a novel technique for multivariant execution, and
discuss related work in Section 2. Here, we position our contribution
with respect to previous work on randomization and security for
WebAssembly.

6.1 Related Work on Randomization
A randomization technique creates a set of unique executions for
the very same program [12]. Seminal works include instruction-set
randomization [9, 34] to create a unique mapping between artificial
CPU instructions and real ones. This makes it very hard for an attacker
ignoring the key to inject executable code. Compiler-based techniques
can randomly introduce NOP and padding to statically diversify
programs. [30] have explored how to use NOP and it breaks the
predictability of program execution, even mitigating certain exploits
to an extent.

Chew and Song [19] target operating system randomization. They
randomize the interface between the operating system and the user ap-
plications: the system call numbers, the library entry points (memory
addresses) and the stack placement. All those techniques are dynamic,
done at runtime using load-time preprocessing and rewriting. Bathkar
et al. [12, 13] have proposed three kinds of randomization transfor-
mations: randomizing the base addresses of applications and libraries
memory regions, random permutation of the order of variables and

, Vol. 1, No. 1, Article . Publication date: August 2022.

10 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

0.0 0.2 0.4 0.6 0.8

Execution time (ms)

101
102
103

D
en

si
ty

encrypt

0.0 0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

decrypt

0.0 0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

random

0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

invert

0.0 0.2 0.4 0.6 0.8

Execution time (ms)

101
102
103

D
en

si
ty

bin2base64

0 200 400 600

Execution time (ms)

101
102
103

D
en

si
ty

qr str

0 200 400 600

Execution time (ms)

101
102
103

D
en

si
ty

qr image

Original binary

Multivariant binary

Fig. 4. Execution time distributions. Each subplot represents the distribution for a single endpoint, blue for the original endpoint and green for the multivariant
binary. The X axis shows the execution time in milliseconds and the Y axis shows the density distribution in logarithmic scale.

200 400 600

Execution time (µs)

0.0000

0.0025

0.0050

0.0075

P
ro

b
ab

il
it

y

Fig. 5. Execution time distributions for the bin2base64 endpoint. Each opaque
curve represents an execution time distribution of a unique execution path
out of the 41 observed.

routines, and the random introduction of random gaps between ob-
jects. Dynamic randomization can address different kinds of problems.
In particular, it mitigates a large range of memory error exploits.
Recent work in this field include stack layout randomization against
data-oriented programming [7] and memory safety violations [37], as
well as a technique to reduce the exposure time of persistent memory
objects to increase the frequency of address randomization [60].
We contribute to the field of randomization, at two stages. First,

we automatically generate variants of a given program, which have
different WebAssembly code and still behave the same. Second,
we randomly select which variant is executed at runtime, creating
a multivariant execution scheme that randomizes the observable
execution trace at each run of the program.

Davi et al. proposed Isomeron [25], an approach for execution-path
randomization. Isomeron simultaneously loads the original program
and a variant. While the program is running, Isomeron continuously
flips a coin to decide which copy of the program should be executed
next at the level of function calls. With this strategy, a potential
attacker cannot predict whether the original or the variant of a
program will execute. MEWE proposes two key novel contributions.
First, our code diversification step can generate variants of complex
control flow structures by inferring constants or loop unrolling.
Second, MEWE interconnects hundreds of variants and several
randomization dispatchers in a single binary, increasing by orders of
magnitude the runtime uncertainty about what code will actually run,
compared to the choice among 2 variants proposed by Isomeron.

6.2 Related work on WebAssembly Security
The reference piece about WebAssembly security is by Lehmann et
al. [38], which presents three attack primitives. Lehmann et al. have
then followed up with a large-scale empirical study of WebAssembly
binaries [29]. Narayan et al. [45] remark that the security model
of WebAssembly is vulnerable to Spectre attacks. This means that
WebAssembly sandboxes may be hijacked and leak memory. They

propose to modify the Lucet compiler used by Fastly to incorporate
LLVM fence instructions4 in the machine code generation, trying to
avoid speculative execution mistakes. Johnson et al. [33], on the other
hand, propose fault isolation for WebAssembly binaries, a technique
that can be applied before being deployed to the edge-cloud platforms.
Stievenart et al. [55] design a static analysis dedicated to information
flow problems. Bian et al. [14] performs runtime monitoring of
WebAssembly to detect cryptojacking. The main difference with our
work is that our defense mechanism is larger in scope, meant to
tackle “yet unknown” vulnerabilities. Notably, MEWE is agnostic
from the last-step compilation pass that translates Wasm to machine
code, which means that the multivariant binaries can be deployed on
any edge-cloud platform that can receive WebAssembly endpoints,
regardless of the underlying hardware.

7 CONCLUSION
In this work we propose a novel technique to automatically synthesize
multivariant binaries to be deployed on edge computing platforms.
Our tool, MEWE, operates on a single service implemented as
a WebAssembly binary. It automatically generates functionally
equivalent variants for each function that implements the service,
and combines all the variants in a single WebAssembly binary, which
exact execution path is randomized at runtime. Our evaluation with 7
real-world cryptography and QR encoding services shows that MEWE
can generate hundreds of function variants and combine them into
binaries that include from thousands to millions of possible execution
paths. The deployment and execution of the multivariant binaries on
the Fastly cloud platform showed that they actually exhibit a very
high diversity of execution at runtime, in single edge nodes, as well
as Internet scale.

Future work with MEWE will address the trade-off between a large
space for execution path randomization and the computation cost of
large-scale runtime randomization. In addition, the synthesis of a large
pool of variants supports the exploration of the concurrent execution
of multiple variants to detect misbehaviors in services deployed at
the edge. Besides, several components of MEWE are implemented
to operate at the level of the LLVM intermediate language. These
components are compatible with other LLVM workflows. We plan to
extend MEWE for other LLVM workflows, such as Rust, a popular
workflow for Wasm applications and libraries.

REFERENCES
[1] 2020. Markdown to HTML. https://markdown-converter.edgecompute.app/

4https://llvm.org/doxygen/classllvm_1_1FenceInst.html

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 11

[2] 2020. The power of serverless, 72 times over. https://www.fastly.com/blog/the-
power-of-serverless-at-the-edge

[3] 2021. Global CDN Disruption. https://status.fastly.com/incidents/vpk0ssybt3bj
[4] 2021. The New York Times on failure, risk, and prepping for the 2016 US presidential

election – Fastly. https://www.fastly.com/blog/new-york-times-on-failure-risk-
and-prepping-2016-us-presidential-election

[5] 2021. WebAssembly System Interface. https://github.com/WebAssembly/WASI
[6] Onur Acıiçmez, Werner Schindler, and Çetin K Koç. 2007. Cache based remote

timing attack on the AES. In Cryptographers’ track at the RSA conference. Springer,
271–286.

[7] Misiker Tadesse Aga and Todd Austin. 2019. Smokestack: thwarting DOP attacks
with runtime stack layout randomization. In Proc. of CGO. 26–36. https://drive.
google.com/file/d/12TvsrgL8Wt6IMfe6ASUp8y69L-bCVao0/view

[8] Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan Daubert,
Franck Fleurey, Martin Monperrus, Hui Song, and Maxime Tricoire. 2015. Multitier
diversification in Web-based software applications. IEEE Software 32, 1 (2015), 83–90.
https://doi.org/10.1109/MS.2014.150

[9] Elena Gabriela Barrantes, David H Ackley, Stephanie Forrest, Trek S Palmer, Darko
Stefanovic, and Dino Dai Zovi. 2003. Randomized instruction set emulation to
disrupt binary code injection attacks. In Proc. CCS. 281–289.

[10] Nicolas Belleville, Damien Couroussé, Karine Heydemann, and Henri-Pierre Charles.
2018. Automated Software Protection for the Masses Against Side-Channel Attacks.
ACM Trans. Archit. Code Optim. 15, 4, Article 47 (nov 2018), 27 pages. https:
//doi.org/10.1145/3281662

[11] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).
[12] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address obfuscation: an

efficient approach to combat a board range of memory error exploits. In Proceedings
of the USENIX Security Symposium.

[13] Sandeep Bhatkar, Ron Sekar, and Daniel C DuVarney. 2005. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of the USENIX
Security Symposium. 271–286.

[14] Weikang Bian, Wei Meng, and Mingxue Zhang. 2020. Minethrottle: Defending
against wasm in-browser cryptojacking. In Proceedings of The Web Conference 2020.
3112–3118.

[15] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks: inducing timing
side channels through just-in-time compilation. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1207–1222.

[16] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. 2007. Diversified process
replicæ for defeating memory error exploits. In Proc. of the Int. Performance,
Computing, and Communications Conference.

[17] David Bryant. 2020. Webassembly outside the browser: A new foundation for
pervasive computing. In Proc. of ICWE 2020. 9–12.

[18] Javier Cabrera-Arteaga, Orestis Floros Malivitsis, Oscar Vera-Pérez, Benoit Baudry,
and Martin Monperrus. 2021. CROW: Code Diversification for WebAssembly. In
MADWeb, NDSS 2021.

[19] Monica Chew and Dawn Song. 2002. Mitigating buffer overflows by operating system
randomization. Technical Report CS-02-197. Carnegie Mellon University.

[20] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2014. A
hybrid edge-cloud architecture for reducing on-demand gaming latency. Multimedia
systems 20, 5 (2014), 503–519.

[21] Frederick B Cohen. 1993. Operating system protection through program evolution.
Computers & Security 12, 6 (1993), 565–584.

[22] Bart Coppens, Bjorn De Sutter, and Jonas Maebe. 2013. Feedback-driven binary code
diversification. ACM Transactions on Architecture and Code Optimization (TACO) 9,
4 (2013), 1–26.

[23] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-variant
systems: a secretless framework for security through diversity. In Proc. of USENIX
Security Symposium (Vancouver, B.C., Canada) (USENIX-SS’06). http://dl.acm.org/
citation.cfm?id=1267336.1267344

[24] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software Diversity.
In NDSS. 8–11.

[25] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian
Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time) Return-
Oriented Programming. In NDSS.

[26] Stephanie Forrest, Anil Somayaji, and David H Ackley. 1997. Building diverse
computer systems. In Proceedings. The Sixth Workshop on Hot Topics in Operating
Systems. IEEE, 67–72.

[27] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web up
to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 185–200.

[28] Pat Hickey. 2018. Announcing Lucet: Fastly’s native WebAssembly compiler and
runtime. Technical Report. https://www.fastly.com/blog/announcing-lucet-fastly-
native-webassembly-compiler-runtime

[29] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-World WebAssembly Binaries: Security, Languages, Use Cases. In Proceedings
of the Web Conference 2021. 2696–2708.

[30] Todd Jackson. 2012. On the Design, Implications, and Effects of Implementing Software
Diversity for Security. Ph.D. Dissertation. University of California, Irvine.

[31] Todd Jackson, Christian Wimmer, and Michael Franz. 2010. Multi-variant program
execution for vulnerability detection and analysis. In Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research. 1–4.

[32] Martin Jacobsson and Jonas Wåhslén. 2018. Virtual machine execution for wearables
based on webassembly. In EAI International Conference on Body Area Networks.
Springer, Cham, 381–389.

[33] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown, Sorin
Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. 2021. SFI safety for
native-compiled Wasm. NDSS. Internet Society (2021).

[34] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003. Countering
code-injection attacks with instruction-set randomization. In Proc. of CCS. 272–280.

[35] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan
Xu. 2015. Dual Execution for On the Fly Fine Grained Execution Comparison.
SIGPLAN Not. (2015).

[36] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and efficient multi-
variant execution using hardware-assisted process virtualization. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,
431–442.

[37] Seongman Lee, Hyeonwoo Kang, Jinsoo Jang, and Brent Byunghoon Kang. 2021.
SaVioR: Thwarting Stack-Based Memory Safety Violations by Randomizing Stack
Layout. IEEE Transactions on Dependable and Secure Computing (2021). https:
//ieeexplore.ieee.org/iel7/8858/4358699/09369900.pdf

[38] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
New Again: Binary Security of WebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association.

[39] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen, Stijn Volckaert, and Michael
Franz. 2018. PartiSan: fast and flexible sanitization via run-time partitioning. In
International Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
403–422.

[40] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-Erik Ekberg, and N Asokan.
2021. PACStack: an Authenticated Call Stack. In 30th USENIX Security Symposium
(USENIX Security 21).

[41] Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2018. Stopping
memory disclosures via diversification and replicated execution. IEEE Transactions
on Dependable and Secure Computing (2018).

[42] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist. 18, 1 (03 1947),
50–60. https://doi.org/10.1214/aoms/1177730491

[43] Matthew Maurer and David Brumley. 2012. TACHYON: Tandem execution for
efficient live patch testing. In 21st USENIX Security Symposium (USENIX Security 12).
617–630.

[44] P. Mendki. 2020. Evaluating Webassembly Enabled Serverless Approach for
Edge Computing. In 2020 IEEE Cloud Summit. 161–166. https://doi.org/10.1109/
IEEECloudSummit48914.2020.00031

[45] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson,
Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen,
et al. 2021. Swivel: Hardening WebAssembly against Spectre. In USENIX Security
Symposium.

[46] Adam J O’Donnell and Harish Sethu. 2004. On achieving software diversity for
improved network security using distributed coloring algorithms. In Proceedings of
the 11th ACM conference on Computer and communications security. 121–131.

[47] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert Bos,
and Cristiano Giuffrida. 2019. kMVX: Detecting kernel information leaks with
multi-variant execution. In ASPLOS.

[48] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing digital side-
channels through obfuscated execution. In 24th USENIX Security Symposium (USENIX
Security 15). 431–446.

[49] Barbara G Ryder. 1979. Constructing the call graph of a program. IEEE Transactions
on Software Engineering 3 (1979), 216–226.

[50] Babak Salamat, Andreas Gal, Todd Jackson, Karthik Manivannan, Gregor Wagner,
and Michael Franz. 2007. Stopping Buffer Overflow Attacks at Run-Time: Simultaneous
Multi-Variant Program Execution on aMulticore Processor. Technical Report. Technical
Report 07-13, School of Information and Computer Sciences, UCIrvine.

[51] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants in
user-space. In Proceedings of the 4th ACM European conference on Computer systems.
33–46.

[52] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael
Franz. 2011. Runtime Defense against Code Injection Attacks Using Replicated
Execution. IEEE Trans. Dependable Secur. Comput. 8, 4 (2011), 588–601. https:
//doi.org/10.1109/TDSC.2011.18

, Vol. 1, No. 1, Article . Publication date: August 2022.

12 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

[53] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for efficient
stateful serverless computing. In USENIX Annual Technical Conference. 419–433.

[54] Natalie Silvanovich. 2018. The Problems and Promise of WebAssembly. Technical
Report. https://googleprojectzero.blogspot.com/2018/08/the-problems-and-
promise-of-webassembly.html

[55] Quentin Stiévenart and Coen De Roover. 2020. Compositional Information Flow
Analysis for WebAssembly Programs. In 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 13–24.

[56] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and
Dario Sabella. 2017. On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration. IEEE Comm. Surveys &
Tutorials 19, 3 (2017).

[57] Kenton Varda. 2018. WebAssembly on Cloudflare Workers. Technical Report.
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/

[58] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2015. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions on
Dependable and Secure Computing 13, 4 (2015).

[59] Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn Volckaert.
2021. dMVX: Secure and Efficient Multi-Variant Execution in a Distributed Setting.
In Proceedings of the 14th European Workshop on Systems Security. 41–47.

[60] Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. Merr: Improving security
of persistent memory objects via efficient memory exposure reduction and
randomization. In Proc. of ASPLOS. 987–1000. https://dl.acm.org/doi/pdf/10.1145/
3373376.3378492

A DISPATCHER FUNCTION CODE

define internal i32 @b64_byte2urlsafe_char(i32 %0) {

entry:

%1 = call i32 @discriminate(i32 3)

switch i32 %1, label %end [i32 0, label %case_43_ i32 1, label

%case_44_]
case_43_: ; preds = %entry
%2 = call i32 @b64_byte_to_urlsafe_char_43_(%0)
ret i32 %2

case_44_: ; preds = %entry
%3 = <body of b64_byte_to_urlsafe_char_44_>

ret i32 %3
end: ; preds = %entry
%4 = call i32 @b64_byte2urlsafe_char_original(%0)
ret i32 %4

}

Listing 3. Dispatcher function embedded in the multivariant binary of the
bin2base64 endpoint of libsodium, which corresponds to the rightmost green
node in Figure 2.

B MULTIVARIANT BINARY EXECUTION AT THE EDGE
When a WebAssembly binary is deployed on an edge platform, it is
translated to machine code on the fly. For our experiment, we deploy
on the production edge nodes of Fastly. This edge computing platform
uses Lucet, a native WebAssembly compiler and runtime, to compile
and run the deployed Wasm binary 5. Lucet generates x86 machine
code and ensures that the generated machine code executes inside a
secure sandbox, controlling memory isolation.
Figure 6 illustrates the runtime behavior of the original and the

multivariant binary, when deployed on an Edge node. The top most
diagram illustrates the execution trace for the original of the endpoint
bin2base64. When the HTTP request with the input "HelloWorld!"
is received, it invokes functions 𝑓 1, 𝑓 2 followed by 27 recursive calls
of function 𝑓 3. Then, the endpoint sends the result
"0x000xccv0x10x00b3Jsx130x000x00 0x00xpopAHRvdGE=" of its
base64 encoding in an HTTP response.
5https://github.com/bytecodealliance/lucet

f1 f2 f3 f3 f3 f3

d1 f2 d2 f31f12 d2 f32 d2 f31

Client

Client

Client

...

...

d1 f2 d2 f32f17 d2 f31 d2 f31...

Original Dispatcher Variant

HTTP request call return HTTP response
Fig. 6. Top: an execution trace for the bin2base64 endpoint. Middle and
bottom: two different execution traces for the multivariant bin2base64,
exhibited by two different requests with exactly the same input.

The two diagrams at the bottom of Figure 6 illustrate two executions
traces observed through two different requests to the endpoint
bin2base64. In the first case, the request first triggers the invocation
of dispatcher 𝑑1, which randomly decides to invoke the variant 𝑓 12;
then 𝑓 2, which has not been diversified by MEWE, is invoked; then
the recursive invocations to 𝑓 3 are replaced by iterations over the
execution of dispatcher 𝑑2 followed by a random choice of variants
of 𝑓 3. Eventually the result is computed and sent back as an HTTP
response. The second execution trace of the multivariant binary shows
the same sequence of dispatcher and function calls as the previous
trace, and also shows that for a different requests, the variants of 𝑓 1
and 𝑓 3 are different.
The key insights from these figures are as follows. First, from a

client’s point of view, a request to the original or to a multivariant
endpoint, is completely transparent. Clients send the same data,
receive the same result, through the same protocol, in both cases.
Second, this figure shows that, at runtime, the execution paths for
the same endpoint are different from one execution to another, and
that this randomization process results from multiple random choices
among function variants, made through the execution of the endpoint.

C VARIANTS PRESERVATION
During our experiments, we checked for code diversity preservation
after compilation. In this work, diversity is introduced through
transformation on WebAssembly code, which is then compiled by
the Lucet compiler. Compilation might perform some normalization
and optimization passes when translating from WebAssembly to
machine code. Thus, some variants synthesized by MEWE might not
be preserved, i.e., Lucet could generate the same machine code for two
WebAssembly variants. To assess this potential effect, we compare the
level of code diversity among the WebAssembly variants and among
the machine code variants produced by Lucet. This experiment reveals
that the translation to machine code preserves a high ratio of function
variants, i.e., approx 96% of the generated variants are preserved.
This result also indicates that the machine code variants preserve the
potential for large numbers of possible execution paths.

, Vol. 1, No. 1, Article . Publication date: August 2022.

SUPEROPTIMIZATION OF WEBASSEMBLY
BYTECODE

Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas
Satabin, Benoit Baudry, Martin Monperrus
Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming (Programming 2021), MoreVMs

https://doi.org/10.1145/3397537.3397567

165

https://doi.org/10.1145/3397537.3397567

Superoptimization of WebAssembly Bytecode
Javier Cabrera Arteaga

KTH
Sweden

javierca@kth.se

Shrinish Donde
KTH

Sweden
shrinish@kth.se

Jian Gu
KTH

Sweden
jiagu@kth.se

Orestis Floros
KTH

Sweden
forestis@kth.se

Lucas Satabin
Mobimeo
Germany

lucas.satabin@gnieh.org

Benoit Baudry
KTH

Sweden
baudry@kth.se

Martin Monperrus
KTH

Sweden
martin.monperrus@csc.kth.se

ABSTRACT
Motivated by the fast adoption of WebAssembly, we propose the
first functional pipeline to support the superoptimization of Web-
Assembly bytecode. Our pipeline works over LLVM and Souper.
We evaluate our superoptimization pipeline with 12 programs from
the Rosetta code project. Our pipeline improves the code section
size of 8 out of 12 programs. We discuss the challenges faced in
superoptimization of WebAssembly with two case studies.

CCS CONCEPTS
• Software and its engineering→ Source code generation; Re-
targetable compilers; Software implementation planning.

KEYWORDS
superoptimization, webassembly, web, optimization, lllvm

ACM Reference Format:
Javier Cabrera Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Sa-
tabin, Benoit Baudry, and Martin Monperrus. 2020. Superoptimization of
WebAssembly Bytecode. In Companion Proceedings of the 4th International
Conference on the Art, Science, and Engineering of Programming (<Program-
ming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3397537.3397567

1 INTRODUCTION
After HTML, CSS, and JavaScript, WebAssembly (WASM) has be-
come the fourth standard language for web development [7]. This
new language has been designed to be fast, platform-independent,
and experiments have shown that WebAssembly can have an over-
head as low as 10% compared to native code [11]. Notably, WebAs-
sembly is developed as a collaboration between vendors and has
been supported in all major browsers since 2017.

The state-of-art compilation frameworks for WASM are Em-
scripten and LLVM [5, 6], they generate WASM bytecode from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397567

high-level languages (e.g. C, C++, Rust). These frameworks can ap-
ply a sequence of optimization passes to deliver smaller and faster
binaries. In the web context, having smaller binaries is important,
because they are delivered to the clients over the network, hence
smaller binaries means reduced latency and page load time. Having
smaller WASM binaries to reduce the web experience is the core
motivation of this paper.

To reach this goal, we propose to use superoptimization. Super-
optimization consists of synthesizing code replacements in order
to further improve binaries, typically in a way better than the best
optimized output from standard compilers [4, 15]. Given a pro-
gram, superoptimization searches for alternate and semantically
equivalent programs with fewer instructions [12]. In this paper,
we consider the superoptimization problem stated as finding an
equivalent WebAssembly binary such that the size of the binary
code is reduced compared to the default one.

This paper presents a study on the feasibility of superoptimiza-
tion of WebAssembly bytecode. We have designed a pipeline for
WASM superoptimization, done by tailoring and integrating open-
source tools. Our work is evaluated by building a benchmark of 12
programs and applying superoptimization on them. The pipeline
achieves a median size reduction of 0.33% in the total number of
WASM instructions.

To summarize, our contributions are:
• The design and implementation of a functional pipeline for
the superoptimization of WASM.

• Original experimental results on superoptimizing 12 C pro-
grams from the Rosetta Code corpus.

2 BACKGROUND
2.1 WebAssembly
WebAssembly is a binary instruction format for a stack-based vir-
tual machine. As described in the WebAssembly Core Specification
[7], WebAssembly is a portable, low-level code format designed
for efficient execution and compact representation. WebAssembly
has been first announced publicly in 2015. Since 2017, it has been
implemented by four major web browsers (Chrome, Edge, Firefox,
and Safari). A paper by Haas et al. [11] formalizes the language and
its type system, and explains the design rationale.

The main goal of WebAssembly is to enable high performance
applications on the web. WebAssembly can run as a standalone VM
or in other environments such as Arduino [10]. It is independent
of any specific hardware or languages and can be compiled for

36

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal J. Cabrera Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, and M. Monperrus

modern architectures or devices, from a wide variety of high-level
languages. In addition, WebAssembly introduces a memory-safe,
sand-boxed execution environment to prevent common security
issues, such as data corruption and security breaches.

Since version 8, the LLVM compiler framework supports the
WebAssembly compilation target by default [6]. This means that
all languages that have an LLVM front end can be directly com-
piled to WebAssembly. Binaryen [14], a compiler and toolchain
infrastructure library for WebAssembly, supports compilation to
WebAssembly as well. Once compiled, WASM programs can run
within a web browser or in a standalone runtime [10].

2.2 Superoptimization
Given an input program, code superoptimization focuses on search-
ing for a new program variant which is faster or smaller than the
original code, while preserving its correctness [2]. The concept of
superoptimizing a program dates back to 1987, with the seminal
work of Massalin [12] which proposes an exhaustive exploration of
the solution space. The search space is defined by choosing a subset
of the machine’s instruction set and generating combinations of
optimized programs, sorted by length in ascending order. If any
of these programs are found to perform the same function as the
source program, the search halts. However, for larger instruction
sets, the exhaustive exploration approach becomes virtually impos-
sible. Because of this, the paper proposes a pruning method over
the search space and a fast probabilistic test to check programs
equivalence.

State of the art superoptimizers such as STOKE [16] and
Souper [15] make modifications to the code and generate code
rewrites. A cost function evaluates the correctness and performance
of the rewrites. Correctness is generally estimated by running the
code against test cases (either provided by the user or generated
automatically, e.g. symbolic evaluation on both original and replace-
ment code).

2.3 Souper
Souper is a superoptimizer for LLVM [15]. It enumerates a set of
several optimization candidates to be replaced. An example of such
a replacement is the following, replacing two instructions by a
constant value:

%0:i32 = var (range=[1,0))

%1:i1 = ne 0:i32, %0

cand %1 1:i1

In this case, Souper finds the replacement for the variable %1 as
a constant value (in the bottom part of the listing) instead of the
two instructions above.

Souper is based on a Satisfiability Modulo Theories (SMT) solver.
SMT solvers are useful for both verification and synthesis of pro-
grams [8]. With the emergence of fast and reliable solvers, program
alternatives can be efficiently checked, replacing the probabilistic
test of Massalin [12] as mentioned in subsection 2.2.

In the code to be optimized, Souper refers to the optimization
candidates as left-hand side (LHS). Each LHS is a fragment of code
that returns an integer and is a target for optimization. Two different

LLVM IRC/C++
Program

1

clang

SOUPER IRLLVM Bitcode
(O3)

3

llvm-opt

WebAssemblyLLVM Bitcode
(O3+Souper)

5

wasm-ld

2

llvm-as

4

llvm-opt

Figure 1: Superoptimization pipeline for WebAssembly
based on Souper.

LHS candidates may overlap. For each candidate, Souper tries to
find a right-hand side (RHS), which is a fragment of code that is
combined with the LHS to generate a replacement. In the original
paper’s benchmarks [15], Souper optimization passes were found
to further improve the top level compiler optimizations (-O3 for
clang, for example) for some programs.

Souper is a platform-independent superoptimizer. The cost func-
tion is evaluated on an intermediate representation and not on
the code generated for the final platform. Thus, the tool may miss
optimizations that make sense for the target instruction set.

3 WASM SUPEROPTIMIZATION PIPELINE
The key contribution of our work is a superoptimization pipeline
for WebAssembly. We faced two challenges while developing this
pipeline: the need for a correct WASM generator, and the usage
of a full-fledged superoptimizer. The combination of the LLVM
WebAssembly backend and Souper provides the solution to tackle
both challenges.

3.1 Steps
Our pipeline is a tool designed to output a superoptimized WebAs-
sembly binary file for a given C/C++ program that can be compiled
to WASM. With our pipeline, users write a high level source pro-
gram and get a superoptimized WebAssembly version.

The pipeline (illustrated in Figure 1) first converts a high-level
source language (e.g. C/C++) to the LLVM intermediate representa-
tion (LLVM IR) using the Clang compiler (Step 1). We use the code
generation options in clang in particular the -O3 level of optimiza-
tion which enables aggressive optimizations. In this step, we make
use of the LLVM compilation target for WebAssembly ‘wasm32-
unknown-unknown’. This flag can be read as follows: wasm32
means that we target the 32 bits address space in WebAssembly;
the second and third options set the compilation to any machine
and performs inline optimizations with no specific strategy. LLVM
IR is emitted as output.

37

Superoptimization of WebAssembly Bytecode <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Secondly, we use the LLVM assembler tool (llvm-as) to convert
the generated LLVM IR to the LLVM bitcode file (Step 2). This LLVM
assembler reads the file containing LLVM IR language, translates it
to LLVM bitcode, and writes the result into a file. Thus, we make
use of the optimizations from clang and the LLVM support for
WebAssembly before applying superoptimization to the generated
code.

Next, we use Souper, discussed in subsection 2.3, to add further
superoptimization passes. Step 3 generates a set of optimized candi-
dates, where a candidate is a code fragment that can be optimized
by Souper. From this, Souper carries out a search to get shorter
instruction sequences and uses an SMT solver to test the semantic
equivalence between the original code snippet and the optimized
one [15].

Step 4 produces a superoptimized LLVM bitcode file. The opt
command is the LLVM analyzer that is shipped with recent LLVM
versions. The purpose of the opt tool is to provide the capability of
adding third party optimizations (plugins) to LLVM. It takes LLVM
source files and the optimization library as inputs, runs the specified
optimizations and outputs the optimized file or the analysis results.
Souper is integrated as a specific pass for LLVM opt.

The last step of our pipeline consists of compiling the generated
superoptimized LLVMbitcode file to aWASMprogram (Step 5). This
final conversion is supported by the WebAssembly linker (wasm-ld)
from the LLD project [13]. wasm-ld receives the object format (bit-
code) that LLVM produces when run with the ‘wasm32-unknown-
unknown’ target and produces WASM bytecode.

To our knowledge, this is the first successful integration of those
tools into a working pipeline for superoptimizing WebAssembly
code.

3.2 Insights
We note that Souper has been primarily designed with the LLVM
IR in mind and requires a well-formed SSA representation of the
program under superoptimization. The biggest challenge with Web-
Assembly is that there no complete transformation from WASM to
SSA. In our pipeline, we work around this by assuming we have ac-
cess to source code, this alternative path may be valid for plugging
other binary format into Souper.

4 EXPERIMENTS
To study the effects and feasibility of applying superoptimization to
WASM code, we run the superoptimization pipeline on a benchmark
of programs.

The benchmark is based on the Rosetta Code corpus1. We have
selected 12 C language programs that compile to WASM. Our selec-
tion of the programs is based on the following criteria:
(1) The programs can be successfully compiled to LLVM IR.
(2) They are diverse in terms of application domain.
(3) The programs are small to medium sized: between 15 and 200

lines of C code each.
(4) They have no dependencies to external libraries.
The code of each program is available as part of our experimental
package2.

1http://rosettacode.org
2https://github.com/KTH/slumps/tree/master/utils/pipeline/benchmark4pipeline_c

Ban
ke

r’s
al
go

rit
hm

A
dd

iti
on

ch
ai
ns

A
liq

uo
t se

qu
en

ce
cla

ss
ifi

ca
tio

ns

Bab
ba

ge
pr

ob
lem

Bitw
ise

io

Eba
n

nu
m

be
rs

Flip
pi

ng
bi

ts
ga

m
e

Par
affi

ns

Pas
ca

l m
at

rix
ge

ne
ra

tio
n

R
es

ist
or

m
es

h

R
un

len
gt

h
en

co
di

ng

Zeb
ra

pu
zz

le

Program names

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
in

st
ru

ct
io

n
s

co
u

n
t

N
o

di
ff

0.
97

94

0.
99

83

0.
46

67

1.
03

20

N
o

di
ff

0.
96

87

0.
97

30

0.
99

89

N
o

di
ff

0.
97

73

0.
99

55

Figure 2: Vertical bars show the relative binary size in # of
instructions. The smaller, the better.

4.1 Methodology
To evaluate our superoptimization pipeline, we run it on each pro-
gram with four Souper configurations:
(1) Inferring only replacements for constant values
(2) Inferring replacements with no more than 2 instructions, i.e. a

new replacement is composed by no more than two instructions
(3) CEGIS (Counter Example Guided Inductive Synthesis, algorithm

developed by Gulwani et al. [9])
(4) Enumerative synthesis with no replacement size limit
In the rest of the paper, we report on the best configuration per
program. Our appendix website contains the results for all configu-
rations and all programs.

With respect to correctness, we rely on Souper’s verification
to check that every replacement on each program is correct. That
means that the superoptimized programs are semantically equiv-
alent. Every candidate search is done with a 300 seconds timeout.
For each program, we report the best optimized case over all men-
tioned configurations. To discuss the results, we report the relative
instruction count before and after superoptimization.

For the baseline program, we ask LLVM to generate WASM pro-
grams based on the ‘wasm32-unknown-unknown’ target with the
-O3 optimization level. Our experiments run on an Azure machine
with 8 cores (16 virtual CPUs) at 3.20GHz and 64GB of RAM.

4.2 Results
Figure 2 shows the relative size improvement with superoptimiza-
tion. The median size reduction is 0.33% of the original instruction
count over the tested programs. From the 12 tested programs, 8
have been improved using our pipeline whereas 3 have no changes
and 1 is bigger (Bitwise IO). The most superoptimized program is
Babbage problem, for which the resulting code after superopti-
mization is 46.67% smaller than the baseline version.

We now discuss the Babbage problem program, originally writ-
ten in 15 lines of C code3. The pipeline found 3 successful code
replacements for superoptimization out of 7 candidates. The best
3http://www.rosettacode.org/wiki/Babbage_problem#C

38

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal J. Cabrera Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, and M. Monperrus

superoptimized version contains 21 instructions, which is much less
than the original which has 45 instructions. The superoptimization
code difference program is shown in Figure 3. Our pipeline, using
Souper, finds that the loop inside the program can be replaced with
a const value in the top of the stack, see lines 8 and 12 in Figure 3.
The value, 25264, is the solution to the Babbage problem. In other
terms, the superoptimization pipeline has successfully symbolically
executed the problem.

The Babbage problem code is composed of a loop which stops
when it discovers the smaller number that fits with the Babbage
condition below.

while((n * n) % 1000000 != 269696) n++;

In theory, this value can also be inferred by unrolling the loop
the correct number of times with llvm-opt. However, llvm-opt
cannot unroll a while-loop because the loop count is not known at
compile time. Additionally, this is a specific optimization that does
not generalize well when optimizing for code size and requires a
significant amount of time per loop.

On the other hand, Souper can deal with this case. The variable
that fits the Babbage condition is inferred and verified in the SMT
solver. Therefore the condition in the loop will always be false,
resulting in dead code that can be removed in the final stage that
generates WASM from bitcode.

In the case of the Bitwise IO program, we observe an increase in
the number of instructions after superoptimization. From the origi-
nal number of 875 instructions, the resulting count after the Souper
pass is increased to 903 instructions. In this case, Souper finds 4
successful replacements out of 207 possible ones. Looking at the
changes, it turns out that the LLVM IR code costs less than the origi-
nal following the Souper cost function. However, the WebAssembly
LLVM backend (wasm-ld tool) that transforms LLVM to WASM
creates a longer WASM version. This a consequence of the discus-
sion on Souper in subsection 2.3. In practice, it is straightforward
to detect and discard those cases.

4.3 Correctness Checking
To validate the correctness of the superoptimized program we per-
form a comparison of the output of the non-superoptimized pro-
gram and the superoptimized one. For 7/12 programs, both versions,
non-superoptimized and superoptimized, behave equally and re-
turn the expected output. For 5/12 programs we cannot run them
because the code generated for the target WASM architecture lacks
required runtime primitives.

5 RELATEDWORK
Our work spans the areas of compilation, transformation, optimiza-
tion and web programming. Here we discuss three of the most
relevant works that investigate superoptimization and web tech-
nologies.

Churchill et al. [4] use STOKE [1] to superoptimize loops in
large programs such as the Google Native Client [3]. They use a
bounded verifier to make sure that every generated optimization
goes through all the checks for semantic equivalence. We apply
the concept of superoptimization to the same context, but with a
different stack, WebAssembly. Also, our work offloads the problem

Figure 3: Output of superoptimization WASM bytecode for
the Babbage problem program.

of semantic checking to an SMT solver, included in the Souper
internals.

Emscripten is an open source tool for compiling C/C++ to the
Web Context. Emscripten provides both, the WASM program and
the JavaScript glue code. It uses LLVM to create WASM but it
provides support for faster linking to the object files. Instead of all
the IR being compiled by LLVM, the object file is pre-linked with
WASM, which is faster. The last version of Emscripten also uses
the WASM LLVM backend as the target for the input code.

To our knowledge, at the time of writing, the closest related
work is the “souperify” pass of Binaryen [14]. It is implemented
as an additional analysis on top of the existing ones. Compared to
our pipeline, Binaryen does not synthesize WASM code from the
Souper output.

6 CONCLUSION
We propose a pipeline for superoptimizing WebAssembly. It is a
principled integration of two existing tools, LLVM and Souper, that
provides equivalent and smaller WASM programs.

We have shown that the superoptimization pipeline works on
a benchmark of 12 WASM programs. As for other binary formats,
superoptimization of WebAssembly can be seen as complementary
to standard optimization techniques. Our future work will focus on
extending the pipeline to source languages that are not handled,
such as TypeScript and WebAssembly itself.

ACKNOWLEDGEMENT
This work has been partially supported by WASP program and
by the TrustFull project financed by the Swedish Foundation for
Strategic Research. We thank John Regehr and the Souper team for
their support.

39

Superoptimization of WebAssembly Bytecode <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

REFERENCES
[1] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Super-

optimizers. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
394–403. https://doi.org/10.1145/1168857.1168906

[2] Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet
Kohli. 2016. Learning to superoptimize programs. arXiv e-prints 1, 1, Article
arXiv:1611.01787 (Nov. 2016), 10 pages. arXiv:cs.LG/1611.01787

[3] Google Chrome. 2013. Welcome to Native Client - Google Chrome. Retrieved
Dec 27, 2019 from https://developer.chrome.com/native-client

[4] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound Loop
Superoptimization for Google Native Client. SIGPLAN Not. 52, 4 (April 2017),
313–326. https://doi.org/10.1145/3093336.3037754

[5] Emscripten Community. 2015. emscripten-core/emscripten. Retrieved 2019-12-
11 from https://github.com/emscripten-core/emscripten

[6] LLVM community. 2019. LLVM 10 documentation. Retrieved 2019-12-12 from
http://llvm.org/docs/

[7] World Wide Web Consortium. 2016. WebAssembly becomes a W3C Recommen-
dation. Retrieved Dec 5, 2019 from https://www.w3.org/2019/12/pressrelease-
wasm-rec.html

[8] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[9] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of Loop-Free Programs. SIGPLAN Not. 46, 6 (June 2011), 62–73. https:
//doi.org/10.1145/1993316.1993506

[10] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: A Dynamic
WebAssembly Virtual Machine for Programming Microcontrollers. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). ACM, New York, NY,
USA, 27–36. https://doi.org/10.1145/3357390.3361029

[11] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
Web up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (June 2017), 185–200.
https://doi.org/10.1145/3140587.3062363

[12] Massalin Henry. 1987. Superoptimizer: a look at the smallest program. ACM
SIGARCH Computer Architecture News 15, 5 (Nov 1987), 122–126. https://doi.
org/10.1145/36177.36194

[13] LLVM. 2019. WebAssembly lld port — lld 10 documentation. https://lld.llvm.
org/WebAssembly.html

[14] WebAssembly. Development of WebAssembly and associated infrastructure. 2017.
emscripten-core/emscripten. Retrieved 2019-12-11 from https://github.com/
WebAssembly/binaryen

[15] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gra-
tian Lup, Jubi Taneja, and John Regehr. 2017. Souper: A Synthesizing Super-
optimizer. arXiv e-prints 2, 1, Article arXiv:1711.04422 (Nov. 2017), 10 pages.
arXiv:cs.PL/1711.04422

[16] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization.
In Proceedings ASPLOS’13. ACM, New York, NY, USA, 305–316. event-place:
Houston, Texas, USA.

40

SCALABLE COMPARISON OF JAVASCRIPT V8
BYTECODE TRACES

Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019)

https://doi.org/10.1145/3358504.3361228

171

https://doi.org/10.1145/3358504.3361228

Scalable Comparison of JavaScript V8 Bytecode Traces
Javier Cabrera Arteaga

KTH Royal Institute of Technology
Stockholm, Sweden
javierca@kth.se

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
martin.monperrus@csc.kth.se

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

Abstract
The comparison and alignment of runtime traces are essen-
tial, e.g., for semantic analysis or debugging. However, naive
sequence alignment algorithms cannot address the needs of
the modern web: (i) the bytecode generation process of V8
is not deterministic; (ii) bytecode traces are large.

We present STRAC, a scalable and extensible tool tailored
to compare bytecode traces generated by the V8 JavaScript
engine. Given two V8 bytecode traces and a distance function
between trace events, STRAC computes and provides the best
alignment. The key insight is to split access betweenmemory
and disk. STRAC can identify semantically equivalent web
pages and is capable of processing huge V8 bytecode traces
whose order of magnitude matches today’s web like https:
//2019.splashcon.org, which generates approx. 150k of V8
bytecode instructions.

CCS Concepts • Information systems → World Wide
Web; • Theory of computation → Program semantics;
• Software and its engineering→ Interpreters; Source code
generation; Designing software.

Keywords V8, Sequence alignment, JavaScript, Bytecode,
Similarity measurement

ACM Reference Format:
Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry.
2019. Scalable Comparison of JavaScript V8 Bytecode Traces. In
Proceedings of the 11th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL ’19), October
22, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3358504.3361228

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6987-9/19/10. . . $15.00
https://doi.org/10.1145/3358504.3361228

1 Introduction
Runtime traces record the execution of programs. This in-
formation captures the dynamics of programs and can be
used to determine semantic similarity [29], to detect abnor-
mal program behavior [8], to check refactoring correctness
[22] or to infer execution models [1]. In many cases, this is
achieved by comparing execution traces, e.g. comparing the
traces of the original program and the refactored one. The
comparison of program traces can be based on information
retrieval [17], tree differencing [9, 27] and sequence align-
ment [2, 11]. In this paper, we focus on the latter, in order
to compare sequences of V8 bytecode instructions resulting
from the execution of JavaScript code.

V8 is an open source, high-performance JavaScript engine.
For debugging purposes, it provides powerful facilities to ex-
port page execution information [21], including intermediate
internal bytecode called the V8 bytecode [4].
Due to the dynamic nature of the Web, we observe that

the bytecode generation process of V8 is not determinis-
tic. For example, visiting the same page several times re-
sults in different V8 bytecode traces every time. This non-
determinism is a key challenge for sequence alignment ap-
proaches, even if they performwell on deterministic program
traces [10]. Besides, V8 bytecode traces are large. Naive se-
quence alignment algorithms are time and space quadratic
on trace sizes and do not scale to V8 bytecode traces. To illus-
trate this scaling problem, let us consider a simple query to
https://2019.splashcon.org: it generates between 139555 and
162558 V8 bytecode instructions, and aligning two traces of
such size, requires approximately 150GB of memory1. This
memory requirement is not realistic for trace analysis tasks
on developer’s personal computers or servers. The key chal-
lenge that we address in this work is to provide a trace
comparison tool that scales to V8 bytecode traces.
In this paper, we present STRAC (Scalable Trace Com-

parison), a scalable and extensible tool tailored to compare
bytecode traces from the V8 JavaScript engine. STRAC im-
plements an optimized version of the DTW algorithm [18].
Given two V8 bytecode traces and a distance function be-
tween trace events, STRAC computes and provides the best
alignment. The key insight is to split access betweenmemory
and disk.
Our experiments compare STRAC with 6 other publicly-

available implementations of DTW. The comparison involves

1In this paper, memory means RAM.

22

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

100 pairs of V8 bytecode traces collected over 6 websites. Our
experimental results show that 1) STRAC can identify se-
mantically equivalent web pages and 2) STRAC is capable of
processing big V8 bytecode traces whose order of magnitude
matches today’s web.

To sum up, our contributions are:

• An analysis of the challenges for analyzing browser
traces, due to the JavaScript engine internals and the
randomness of the environment. We explain and show
examples of how the same browser query can generate
two different V8 bytecode traces.

• A tool called STRAC that implements the popular align-
ment algorithm DTW in a scalable way, publicly avail-
able at https://github.com/KTH/STRAC .

• A set of experiments comparing 100 V8 bytecode
traces collected over 6 real world websites:google.com,
kth.se, github.com, wikipedia.org, 2019.splashcon.org
and youtube.com. Our experiments show that STRAC
copes with the non-deterministic traces and is signifi-
cantly faster than state-of-the-art tools.

The paper is structured as follows. First we introduce a
background of V8 bytecode generation non-determinism and
the formalisms used in our work (Section 2). Then follows
with technical insights to implement STRAC (Section 3),
research question formulation, experimental results with a
discussion about them (Section 4). We then present related
work (Section 5) and conclude (Section 6).

2 Background
In this section we discuss the key insights behind the non-
determinism of the V8 bytecode generation process, as well
as the foundations of the DTW alignment algorithm.

2.1 Browser Traces
Our dynamic analysis technique is evaluated with V8 byte-
code [19]. In this subsection, we describe how the V8 engine
generates bytecode trace. We collect such traces to evaluate
our trace comparison tool. In this work, we use the term "V8
bytecode trace" to refer to the result of executing V8 with
the –print-bytecode flag [21].

2.1.1 V8 Bytecode Generation
The V8 engine compiles JavaScript source code to an inter-
mediate representation called “V8 bytecode”. This is done
to increase execution performance. The V8 engine parses
and compiles every JavaScript code declaration present in
HTML pages into a bytecode representation, composed by
function declarations, like the one shown in Figure 1. These
function declarations came from V8 builtin JavaScript code
and external JavaScripts.
V8’s bytecode interpreter is a register machine [16]. Fig-

ure 1 shows a JavaScript code and its bytecode translation.

Each bytecode operator specifies its inputs and outputs as
register operands. V8 has 180 different bytecode operators.

The bytecode translation is lazy, i.e. V8 tries to avoid gen-
erating code it "thinks" might not be executed. Consequently,
a function that is not called will not be compiled [28]. For
example, removing line 2 in the top listing of Figure 1 would
prevent the compilation of bytecode for the function declared
in line 1. This behavior has an impact on the collected traces.

1 function plusOne(a){ return a.value + 1; }

2 plusOne({value : 2018});

1 [generated bytecode for function: plusOne]

2 Parameter count 2

3 Register count 0

4 Frame size 0

5 30 E> 0x1373c709b6 @ 0 : a5 00 00 00 StackCheck

6 56 S> 0x1373c709b7 @ 1 : 28 02 00 01

↪→ LdaNamedProperty a0, [0], [1]

7 62 E> 0x1373c709bb @ 5 : 40 01 00 00 AddSmi [1],

↪→ [0]

8 66 S> 0x1373c709be @ 8 : a9 00 00 00 Return

Figure 1. Example of a JavaScript function and its corre-
sponding V8 bytecode instructions.

We have observed that V8 bytecode is resilient to script
minification and static code-obfuscation techniques. There-
fore, we believe that aligning such low-level representations
could prove to be a useful aid in many program analysis
tasks, such as code similarity study and malware analysis.

2.1.2 Non-Determinism in Browser Traces

bytecode p1 p2 p3

<html...
<script p1.js...
<script p2.js...
<script p3.js...

p2.js
p3.js

p1.js

p1.js
p2.js

bytecode p1 p3p2

t0

fetching
parsing and
compiling

<html...
<script p1.js...
<script p2.js...
<script p3.js... p3.js

Figure 2. Illustration of two different script fetching and
compiling traces for the same browser query.

Interestingly, browsers are fundamentally non determinis-
tic, depending on web server availability, current workload,

23

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

and DNS caches through the network. Let us look at the
example illustrated in Figure 2. It shows what happens when
fetching a web page, which contains 3 scripts. The top and
bottom parts illustrate, for the same page, two different exe-
cutions. Dashed border rectangles represent complete byte-
code generation traces. The blue spaces in the bar are V8
common builtin bytecode, which is systematically generated
in all browser requests. Orange rectangles illustrate declared
page scripts compilations. The complete bytecode trace is
the union of both generated bytecodes, builtin V8 and page
declared scripts. In the first case at the top of Figure 2, the
scripts are fetched and compiled in the same order they are
declared. In the second case, at the bottom, p3.js is carried
and compiled first, before p2.js due to a possible network de-
lay. However, V8’s compiler will put all scripts compilations
in the same order they are declared in the HTML page. The
final result is two semantically equivalent bytecode compila-
tions, where script blocks may not be strictly placed in the
same position.

The slight differences that occur in the final bytecode for
same browser queries motivate us to provide an efficient tool
for traces alignment: traces where events occur in different
orders but that have the same semantics must be considered
as equivalent. The order of events should not confuse the
trace comparison tool.

2.1.3 DTW Algorithm
The DTW algorithm has been introduced by Needleman and
Wunsch for protein global alignment [18]. Global alignment
means trace heads and tails are constrained to match each
other in position. DTW is a popular technique for comparing
traces in different domains, incl. software traces [14]. DTW
finds the best global alignment between two traces, based on
a generic similarity function between trace events and gaps.

Definition (Trace) A trace X is defined as a sequence of
events. X = x1, x2, ...xN represents a trace of size N where
each xi is the event happening at the ith position.

Definition (Cost Matrix) D is a cost matrix for two
traces X and Y of size n andm. Di j stores the optimal cost
alignment value for X and Y considered from the start up
to the ith and jth positions respectively, that is the minimal
cost of aligning xi and yj events at the same position in the
final alignment.

The cost matrix is defined according to a distance function
d and a gap cost γ as follows:

D0i = γ ∗ i
D j0 = γ ∗ j

Di j =min

Di−1j + γ ,
Di j−1 + γ
Di−1j−1 + d(xi ,yj)

In every cell, the value Di j is the minimum cost between
putting a gap in one trace and the result of evaluating the
distance function between events xi and yj .

Definition (Alignment Cost) Given two traces X and Y
with sizes N and M respectively, the alignment cost is the
value stored in DNM .

Definition (Alignment Difficulty) Given two traces X
and Y with sizes N andM respectively, the alignment diffi-
culty is simply the multiplication of both sizes N ×M .

Definition (Warp Path) The warp path is the path to go
from DNM to the first element D00 minimizing the cumula-
tive cost. In general more than one path may exist. Size of
warp path is O(N +M).

Definition (Aligned Trace) An aligned trace is a trace
where the warp path is applied, i.e. some gaps have been put
between some events in one of both traces.
In Figure 3 we illustrate the alignment between traces

abcababc and aabaca with γ = 1, d(xi ,yj) = 2 if xi , yi
and d(xi ,yj) = 0 if xi = yi . The warp path is represented as
the blue and orange lines going across the matrix from the
top left corner to the bottom right corner. In this example,
alignment cost is 4, as we can see in bottom right corner cell
in Figure 3.

a a b a c a

a
b
c
a
b
a
b
c

543210 6
51 0 1 2 3 4
42 1 2 1 2 3
33 2 3 2 3 2
24 3 2 3 2 3
35 4 3 2 3 4
46 5 4 3 2 3
57 6 5 4 3 4
48 7 6 5 4 3

cabaa b c b

acabaa

Figure 3. Cost matrix, warp path and applied alignment for
abcababc and aabaca example traces.

3 STRAC: Trace Comparison Tool for V8
STRAC is an approach to compare large traces, tailored to
bytecode traces of the V8 JavaScript engine. STRAC takes
as input a trace of JavaScript V8 bytecode traces collected
in the browser. It produces as output, a trace alignment, and
a distance measure between the two traces. STRAC imple-
ments the DTW algorithm presented in Subsection 2.1.3.
It is an open-source project publicly-available on https:
//github.com/KTH/STRAC . In this section, we explain the

24

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

key components and insights of STRAC to achieve scalable
trace comparison.

3.1 Challenges Addressed by STRAC
Non-Determinism As shown in Subsection 2.1.2, V8 can
provide two different bytecode traces for the same web page.
In this case, both traces are semantically equivalent, but the
global position of code modules can vary. These variations
occur as a consequence of resource management, interpreter
optimizations and JavaScript code fetching from the network.
It is challenging because it can provide 1) false positives: two
traces may be considered different even when they come
from the same pages; 2) false negatives: two traces may be
considered the same evenwhen they come from two different
pages.

Size Browser traces are huge and naive trace comparison
fails on such traces because of memory requirements. For
instance, aligning two traces of size 63137 and 58265 events
requires a DTW cost matrix, represented as a bidimensional
integer matrix, of 14.72 GB of memory. The challenge is to
make trace comparison at the scale of browser traces, with
tractable memory requirements.

3.2 DTW Distance Functions
The DTW algorithm has two main parameters: a distance
function and a gap cost as explained in Subsection 2.1.3. The
distance function between events affects the global align-
ment result, as we show in Subsection 4.5. It defines the
matching of two different trace instructions if these instruc-
tions have a certain level of similarity. For example, when
comparing ’AddSmi [0], [1]’ and ’AddSmi [1], [0]’ instruc-
tions, they can be considered as similar because the AddSmi
operator is in both.

In STRAC, we define two distance functions for bytecode
instructions.

dSen(xi ,yj) =

s if xi and yj events are exactly
the same bytecode instruction
c otherwise

dInst (xi ,yj) =

s if xi and yj bytecode instructions
share the same bytecode operator
c otherwise

Both require the identity relationship of the bytecode in-
struction. For V8 bytecode, based on our results (Subsec-
tion 4.5), it seems incoherent to accept an alignment match
with two different elements instead of introducing the gap.

We now discuss the value of γ , s and c . The cost of in-
troducing a gap, intuitively, must be less than the cost of
matching two different events, i.e. γ < s . c is the value of
matching two equal events, 0. The default values are based
on our experience, s = 5, γ = 1 and c = 0. The three are
configurable.

3.3 Buffering the Cost Matrix
The key limitation of DTW is the need for a large cost ma-
trix to retrieve the warp path. Recall our example requiring
14.72 GB in Subsection 3.1. This means that a naive imple-
mentation can only compare small traces due to memory
explosion.

In STRAC, we solve this problem by storing the cost matrix
both in memory and disk. Only the appropriate values are
kept in memory. Our key insight is that the current valueDi j
in the cost matrix is calculated with the previous row and
column, consequently, only O(N) memory space is needed
to compute DNM . Thus, STRAC only maintains the current
and previous row in memory for each DTW iteration. After
processing a row, it is saved to disk. STRAC eventually saves
the complete cost matrix to disk.

For traces with lengths 63137 and 58265, instead of 14.72
GB, STRAC requires no more than 86MB of memory for the
trace alignment, which represents an improvement of 99.5%
in memory consumption.

3.4 Retrieving the Warp Path
In addition to the alignment cost, it is necessary to obtain
the warp path in order to create and analyze the aligned
traces. Recall that the aligned traces are obtained by applying
the warp path on both initial traces, as we mentioned in
Subsection 2.1.3.
To retrieve the warp path from the final cost matrix, one

goes backward and starts from the trace tail positions (DNM).
Cost matrix in Di j depends on three neighbors Di−1j , Di j−1
and Di−1j−1. The backtracking process finishes when the
trace start is reached, i.e. when the left top corner D00 is
reached in the matrix. In the warp path construction pro-
cess, trace indices are always decreasing by one, i.e. trace
events are visited only once. Therefore, in STRAC, backtrack-
ing over the final cost matrix requires only O(N +M) read
operations on disk, which is scalable.

3.5 DTW Approximations
Due to the quadratic time and space complexity of DTW,
previous work has proposed approximations to speed up
the alignment process. STRAC also implements two state-of-
the-art DTW approximations. We now mention these two
approximations.

Fixed Regions Using fixed regions is a technique only to
evaluate a specified region in the cost matrix [7, 12, 13, 24].
Consequently, the globally optimal warp path will not be
found if it is not entirely in the window. This improvement
speeds up DTW by a constant factor, but the execution time
is still O(NM). STRAC provides support for fixed regions.

25

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

FastDTW 2 [25] is an approximation of DTW that has
a linear time and space complexity. It combines data ab-
straction and constraint search in the solution space. STRAC
implements FastDTW. Note that, for DTW and its approxi-
mations, the default mode is the buffering mode presented
in Subsection 3.3.

3.6 Recapitulation
To sum up, STRAC is an optimized implementation of DTW
and two approximations with distance functions dedicated
to V8 bytecode traces and with neat handling of the cost
matrix over memory and disk in order to scale.

4 Experimental Evaluation
We assess the scalability of STRAC for V8 bytecode trace
comparison with the following research questions:

• RQ1 (Scalability): To what extent does STRAC scale to
traces of real-world web pages?

• RQ2 (Consistency): To what extent does STRAC iden-
tify similarity in semantically-equivalent traces?

• RQ3 (Distance Functions): What is the effectiveness of
STRAC support of different distance functions?

4.1 Study Subjects
Our experiment is based on tracing the home page of
the following sites; google.com, github.com, wikipedia.org,
youtube.com, four of the most visited websites, according
to Alexa. We also add two sites based on personal interest:
2019.splashcon.org and kth.se, the homepage of our Univer-
sity. All those pages use JavaScript code. The traces were
generated just opening the page without any other further
action. Since the traces are non-deterministic, we collect 100
traces for the same page. This means we collect 600 traces
in total.

Table 1. Descriptive statistics of our benchmark.
The 6 sites are sorted by popularity according to
the Alexa index. Example bytecodes are available in
https://github.com/KTH/STRAC/tree/master/STRACAlign/
src/test/resources/bytecodes.

Site No. scripts Bytecode size
google.com 5 85768
youtube.com 15 166626
wikipedia.org 4 48260
github.com 3 59384
kth.se 9 64178
2019.splashcon.org 17 147196

Table 1 gives an overview of the collected traces. The first
column shows the real world website names. The second
2The implementation mentioned in the original paper (https://cs.fit.edu/
~pkc/FastDTW/) was not available at the moment of this work.

and third columns indicate the number of declared scripts
and the bytecode size mean value (orange dots in Figure 4)
respectively. For instance, Wikipedia loads 4 scripts and pro-
duces bytecode traces of 48260 bytecode instructions. This
value is the lowest of our benchmark. On the contrary, for
Youtube, the page declares 15 JavaScript scripts, and V8 gen-
erates traces of 166626 bytecode instructions, and this is due
to the richer features of Youtube compared to Wikipedia.
In our benchmark, the bytecode traces are in the range of
48k-166k instructions.

Recall that the bytecode traces are non-deterministic even
for the same page (see Subsection 2.1.2). We measure how
many instructions are contained in each V8 bytecode trace.
Figure 4 illustrates the distribution of trace sizes as violin
plots. This figure shows that there is a variance of bytecode
traces for all pages (Wikipedia also has some variance but this
is not shown in the figure because of the scale). This variance
is a consequence of several stacked factors: resource manage-
ment, interpreter optimization and JavaScript code fetching
from the network. To our knowledge, this non-determinism
in web traces is overlooked by research.

0 25000 50000 75000 100000 125000 150000 175000

www.google.com

0 25000 50000 75000 100000 125000 150000 175000

youtube.com

0 25000 50000 75000 100000 125000 150000 175000

wikipedia.org

0 25000 50000 75000 100000 125000 150000 175000

www.github.com

0 25000 50000 75000 100000 125000 150000 175000

www.kth.se

0 25000 50000 75000 100000 125000 150000 175000

Number of V8 bytecode instructions

2019.splashcon.org

Figure 4. Variance of V8 bytecode trace size for 100 repeti-
tions of the same query.

4.2 Experimental Methodology
Every trace is collected using a non-cached browser ses-
sion, without plugins. This choice is motivated by two main
reasons: 1) we have observed that cached scripts do not af-
fect bytecode generation as direct network fetching does;

26

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

2) browser plugins are compiled to the same bytecode trace
and in the scope of this work we are interested only in V8
bytecode traces directly generated from web page scripts.
To answer RQ1, we align 12 trace pairs randomly taken

from the initial set of all possible trace pairs (600 × 600). We
compare STRAC with different implementations of DTW 1)
From public github repositories: rmaestre 3, dtaidistance 4

and pierre-rouanet 5; 2) From R’s dtw package [6] ; 3) The
DTW implementation used in [15], slaypni 6. For each com-
parison, we compute the average wall-clock execution time.

RQ2 is answered as follows. We select a random sample
of 100 pairs from all possible trace pairs (600 × 600). We
select 35 pairs of traces extracted from the same pages and
65 pairs of traces extracted from different pages. Alignment
cost is measured for each pair using gap cost γ = 1 and
event distance function dSen (defined in Subsection 3.2), with
parameters: s = 5 and c = 0. We group and plot each pair
alignment cost per site.
We answer RQ3 using the same traces as RQ2. We com-

pute DTW on each one of the 100 sampled pairs. We use
the same gap cost γ = 1, but we compare the two distance
functions dSen and dInst (defined in Subsection 3.2), with
parameters: s = 5 and c = 0. We measure the alignment cost
for each pair and compare the results with the ones obtained
in RQ2.

The STRAC experimentation has been made on a PC with
Intel Core i7 CPU and 16Gb DDR3 of RAM. We extract all
traces from Chrome version 74.0.3729.169 (Official Build)
(64-bit).

4.3 Answer to RQ1: Scalability
Figure 5 shows the execution time of 6 different alignment
tools on 12 trace pairs. The X axis gives the size of the align-
ment problem, which is the multiplication of the size of both
traces in number of bytecode instructions. The Y axis rep-
resents the execution time in seconds with a logarithmic
scale.

First, we observe that four tools get out of memory for all
the considered trace pairs: R-dtw, cpy-wannesm, rmaestre,
cpy-slaypul (see the red dot in Figure 5). The main reason for
this failure is that those tools need to store the cost matrix
in memory. The least difficult trace comparison in the plot
is a pair of traces of 48k instructions each. Finding the best
alignment for this pair consists in analyzing an eight-bytes
integer matrix of approx. 20GB (exactly 18632 millions of
bytes). This memory requirement is almost the full mem-
ory of modern personal computers and it causes memory
explosion at runtime. Applying the same analysis to the
most difficult alignment in the plot shows requires 200GB of
memory.
3https://github.com/rmaestre/FastDTW
4https://github.com/wannesm/dtaidistance
5https://github.com/pierre-rouanet/dtw
6https://github.com/slaypni/fastdtw

Second, py-wannesm and py-pierre-rouanet calculate the
best alignment cost for the first 10 pairs, without anymemory
issue, even for problems in the order of magnitude close to
1.5× 1010 in alignment difficulty. After this value, these tools
also start to get memory issues for the same reason as the
other tools. Yet, these succesfully align the 10 pairs (orange
and green curves in Figure 5) thanks to an efficient use of
Numpy [3] arrays to store cost matrix. Numpy arrays in
Python are tailored to efficiently deal with arrays up to 20GB
of memory in x64 architectures. We also observe that py-
wannesm is always slower than py-pierre-rouanet. The main
reason for this time difference is that py-wannesm does an
extra pass through the cost matrix and py-pierre-rouanet
does not do it.

Third, STRAC succesfully find the best alignment cost for
all pairs in the benchmark, even for trace pairs that require
memory beyond Numpy capabilities (the last two blue dots in
Figure 5). The key insight behind is that STRAC implements
the cost matrix data structure as a hybrid between memory
and disk, i.e. moving such memory needs to disk.
Both Python implementations (py-wannesm and py-

pierre-rouanet) systematically take at least one order of mag-
nitude longer to run, compared to STRAC. The main reason
behind this is that Python usually compiles code at runtime,
while Java compiles it in advance, making a faster program.
Besides, most JVMs perform Just-In-Time compilation to
all or part of programs to native code, which significantly
improves performance, but mainstream Python does not do
this.
Recall that best alignment calculation using naive DTW

implementation is non-scalable by its space-time quadratic
nature, any implementation of DTW (even the one included
in STRAC) eventually will run out of space (in memory or
disk) and execution time will be near to impossible. How-
ever, STRAC can deal with all trace pairs of our benchmark
thanks to its hybrid strategy that leverages both the disk
and the memory. To align an average trace of 100k instruc-
tions, STRAC takes approx. 14 minutes in a PC like the one
mentioned in Subsection 4.2.

4.4 Answer to RQ2: Consistency
In Figure 6, we plot the alignment cost for 100 trace pairs, the
blue dots represent pairs extracted from the same page, the
orange dots illustrate trace pairs taken from two different
pages. Each column corresponds to a given web page. Green
dots represent pairs with the maximum alignment cost for
each site: an alignment of the web page treated in the column
with a trace from the site cited above the dot. For example,
the green dot in the first column is an alignment of a trace
pair (2019.splashcon, youtube).

In Figure 6, we observe that, for each site, traces from the
same page have a lower alignment cost. This is consistent
with the fact that in these cases, the majority of both traces

27

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

0.5 1.0 1.5 2.0 2.5

Alignment difficulty (N ×M) ×1010

102

103

104

A
v
g.

A
li
gn

m
en

t
co

st
E

x
ec

u
ti

on
T

im
e

(s
)

STRAC

py-wannesm

py-pierre-rouanet

Out of memory
- R dtw
- rmaestre
- cpy-wannesm
- cpy-slaypni

Figure 5. Execution time for 12 trace pair comparisons by 7
tools incl. STRAC. Y axis is in logarithmic scale. Four tools
fail even on the smallest traces.

in the pair are the same. On the contrary, the alignment cost
between traces from different pages is higher.

Some cases show blue dots with sparsed high values. This
occurs when external scripts, declared in some pages, present
a high variance in fetching process time. Also, it sometimes
happens that for one script declared in a page, the remote
servers sends different JavaScript code at each every request.
Therefore, the generated bytecode varies more from one
load to another, and the alignment cost is increased, show-
ing a small margin between orange dots and the blue ones.
However, we observe two scenarios when these phenom-
ena are mitigated. First, when the bytecode generated from
the external declaration is larger than the builtin bytecode
(2019.splashcon, UNIV, and Youtube cases present a clear sep-
aration between clusters). Second, when the fetching process
time is stable, as Wikipedia and Github cases show.
In the case of Google, we observe the worst possible sce-

nario. This site has 5 external declared scripts (see Table 1), 3
of them have variable fetching time and their content varies
at each load. These 3 scripts integrate Google Analytics fea-
tures to the site. On the contrary, in the case of Wikipedia,

external declared JavaScripts always provide the same code
in almost constant time. As a result, the generated bytecode
is more deterministic and alignment cost decreases for traces
from the same site. In the case of Wikipedia, alignment costs
for pairs of traces collected from the same page vary between
1926 and 2652. These values are the lowest alignment costs
in the benchmark, and they differ from others in more than
2× in order of magnitude

Overall, the traces from the same (resp. different) page are
located in separated clusters. In all cases, we also observe
groups of orange dots that can be easily separated from other
orange clusters. This separation is a consequence of seman-
tic differences between sites and the increase of JavaScript
declarations. For instance, in the first column of Figure 6,
trace pairs from 2019.splashcon and Youtube home pages
have higher alignment costs. This is a consequence of that
Youtube is a richer feature site as 2019.splashcon is, but they
semantically differ. We also observe this behavior in the case
of Kth and Youtube trace pairs.

V8 compiles builtin JavaScript code to the same bytecode
trace, as we discussed in Subsection 2.1.1. This bytecode
generation is included in all collected traces. To validate this,
we computed the V8 bytecode trace of an empty page: it
contains 40k bytecode instructions on average. This also
represents a constant noise in the alignment computation.
As Figure 6 illustrates, given the alignment cost of two

semantically equivalent traces (blue dots) as a reference,
STRAC is capable of identifying similarity with other page
traces. However, we want to remark that STRAC accuracy
gets improved when JavaScript declarations increase in the
compared sites.

4.5 Answer to RQ3: Distance Functions
In Figure 7, we plot the alignment cost using distance dIns .
Recall that dIns is less restrictive than dSen , the distance
used to answer RQ2. By comparing Figure 7 and Figure 6,
we observe interesting phenomena. First, changing the dis-
tance function breaks the clustering breakdown for Github,
Google and Kth (some blue points get mixed with orange
points). Second, the maximum alignment cost is lower than
in Figure 6 for all sites. These phenomena are consequences
of using a less restrictive distance function, i.e. with dIns ,
only the operator is analyzed in the bytecode instructions
comparison. Overall, the choice of distance function matters.
STRAC can be extended with new distance functions and
provides dSen by default for properly aligning V8 bytecode
traces.
We notice that the impact of the distance function is big-

ger for sites with less JavaScript. For Google, Github and
Wikipedia, using dIns is bad because it breaks the cluster-
ing. For the remaining three websites, which involve more
JavaScript features, while the alignment changes, the core
property of the alignment of identifying semantically equiv-
alent traces still holds.

28

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

60000

80000

100000

120000

140000

160000

180000

200000

A
li
gn

m
en

t
co

st

youtube

2019.splashcon.org

0

20000

40000

60000

80000

100000

120000
youtube

wikipedia.org

20000

40000

60000

80000

100000

120000

140000

youtube

www.github.com

60000

80000

100000

120000

140000

160000
youtube

www.google.com

40000

60000

80000

100000

120000

140000
youtube

kth.se

25000

50000

75000

100000

125000

150000

175000

200000
splashcon

youtube.com

Traces computed from the same page

Traces computed from two different pages

Maximum alignment cost

Figure 6. Alignment costs for 100 trace pair comparisons using dSen as distance function.

5 Related Work
DTW is memory greedy on trace size, a similar problem
arises when dealing with streaming traces. Oregi et al. [20]
and Martins et al. [15] present a generalization of DTW for
large streaming data. They propose the use of incremen-
tal computation of the cost matrix complemented with a
weighted event distance function adding event positions.
However, their results may differ from the original DTW
warp path. On the contrary, STRAC also computes the exact
alignment cost without approximations.
Kargen et al. [10] propose a combination of data abstrac-

tion and FastDTW to align two program traces at the binary
level. They record and analyze read and write operations to
memory and x86 registers. Also, they argue and they show
that their method scales to large traces. STRAC is also capa-
ble of analyzing such traces, but targets different kinds of
traces: V8 bytecode traces, which are not handled by Kargen
et al.
Ratanaworabhan et al. [23] instrument Internet Explorer

tomeasure JavaScript runtime and static behavior in function
calls and event handlers on real-world websites. By doing so,
they show that common benchmarks, like SpiderMonkey and

V8-Suite, are not representative of real application behavior.
We could use STRAC to perform a similar analysis onmodern
browsers.

With JALANGI, Sen et al. [26] provide a framework to dy-
namically analyze JavaScript. The framework works through
source code instrumentation. JALANGI associates shadow
values to variables and objects in the instrumented code, Sen
et al. argue that most of of state-of-the-art dynamic analysis
techniques can be implemented, like concolic evaluation and
taint analysis. However, JALANGI has several limitations
dealing with builtin code and instrumentation can decrease
instrumented code execution performance. With STRAC, we
propose to use V8 bytecode traces to compare JavaScript
semantic similarity without JavaScript instrumentation.
Fang et al. [5] propose a JavaScript malicious code de-

tection model based on neural networks. To mitigate the
obfuscation techniques used in malicious code, they analyze
the dynamic information recorded in V8 bytecode traces.
Both STRAC and Fang et al. consider V8 bytecode traces, yet
the usages are different: they do anomaly detection while
we do trace comparison.

29

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

60000

80000

100000

120000

140000

160000

A
li
gn

m
en

t
co

st

youtube

2019.splashcon.org

0

20000

40000

60000

80000

100000

120000
youtube

wikipedia.org

20000

40000

60000

80000

100000

120000

140000
youtube

www.github.com

20000

40000

60000

80000

100000

120000

140000

youtube

www.google.com

40000

60000

80000

100000

120000

140000
youtube

kth.se

40000

60000

80000

100000

120000

140000

160000

splashcon

youtube.com

Traces computed from the same page

Traces computed from two different pages

Maximum alignment cost

Figure 7. Alignment cost for 100 trace pair comparisons using dIns as distance function.

6 Conclusion
In this paper, we presented a tool, called STRAC, for aligning
execution traces. STRAC is tailored to traces of the JavaScript
V8 engine. STRAC implements an optimized version of the
DTW algorithm and two of its approximations. Our exper-
iments show that STRAC scales to real-world JavaScript
traces consisting of V8 bytecodes. STRAC provides two dis-
tance functions for trace event comparison and can be con-
figured with any arbitrary distance function. Our evaluation
indicates that STRAC performs better than state of the art
DTW implementations, for 6 representative web sites.

We have shown that V8 bytecode contains redundancy and
that an empty page includes more than 40k trace instructions.
By removing this redundant and useless trace instructions,
the alignment would get better. In our future work, we will
study how to remove redundancy in V8 bytecode traces, for
providing a better behavioral similarity measure for modern
web pages full of JavaScript code.

Acknowledgments
This material is based upon work supported by the Swedish
Foundation for Strategic Research under the Trustfull project

and by the Wallenberg Autonomous Systems and Software
Program (WASP).

References
[1] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and

Michael D. Ernst. 2011. Leveraging Existing Instrumentation to Au-
tomatically Infer Invariant-Constrained Models. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering - SIGSOFT/FSE ’11 (2011). ACM
Press, 267. https://doi.org/10.1145/2025113.2025151

[2] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019.
Semantic ProgramAlignment for Equivalence Checking. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2019). ACM, New York, NY, USA, 1027–1040.
https://doi.org/10.1145/3314221.3314596

[3] Numpy community. 2018. Numeric python. https://www.numpy.org/
index.html

[4] V8 JavaScript engine. 2016. Ignition design documentation. https:
//v8.dev/docs/ignition

[5] Y. Fang, C. Huang, L. Liu, and M. Xue. 2018. Research on Malicious
JavaScript Detection Technology Based on LSTM. IEEE Access 6 (2018),
59118–59125. https://doi.org/10.1109/ACCESS.2018.2874098

[6] Toni Giorgino. 2009. Computing and Visualizing Dynamic TimeWarp-
ing Alignments in R: The dtw Package. Journal of Statistical Software,
Articles 31, 7 (2009), 1–24. https://doi.org/10.18637/jss.v031.i07

30

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

[7] F. Itakura. 1975. Minimum prediction residual principle applied to
speech recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing 23, 1 (February 1975), 67–72. https://doi.org/10.1109/TASSP.
1975.1162641

[8] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. 2007. Multires-
olution Abnormal Trace Detection Using Varied-Length n-Grams
and Automata. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews) 37, 1 (Jan 2007), 86–97. https:
//doi.org/10.1109/TSMCC.2006.871569

[9] T. Kamiya. 2018. Code difference visualization by a call tree. In 2018
IEEE 12th International Workshop on Software Clones (IWSC). 60–63.
https://doi.org/10.1109/IWSC.2018.8327321

[10] Ulf Kargén and Nahid Shahmehri. 2017. Towards Robust Instruction-
level Trace Alignment of Binary Code. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017). IEEE Press, Piscataway, NJ, USA, 342–352. http://dl.acm.
org/citation.cfm?id=3155562.3155608

[11] Hyunjoo Kim, Jonghyun Kim, Youngsoo Kim, Ikkyun Kim, Kuinam J.
Kim, and Hyuncheol Kim. 2017. Improvement of malware detection
and classification using API call sequence alignment and visualization.
Cluster Computing (12 Sep 2017). https://doi.org/10.1007/s10586-017-
1110-2

[12] Daniel Lemire. 2008. Faster Retrieval with a Two-Pass Dynamic-Time-
Warping Lower Bound. CoRR abs/0811.3301 (2008). arXiv:0811.3301
http://arxiv.org/abs/0811.3301

[13] Y. Lou, H. Ao, and Y. Dong. 2015. Improvement of Dynamic Time
Warping (DTW) Algorithm. In 2015 14th International Symposium on
Distributed Computing and Applications for Business Engineering and
Science (DCABES). 384–387. https://doi.org/10.1109/DCABES.2015.103

[14] Marcelo De A. Maia, Victor Sobreira, Klérisson R. Paixão, Ra A. De
Amo, and Ilmério R. Silva. 2008. Using a sequence alignment algorithm
to identify specific and common code from execution traces. In Pro-
ceedings of the 4th International Workshop on Program Comprehension
through Dynamic Analysis (PCODA. 6–10.

[15] R. M. Martins and A. Kerren. 2018. Efficient Dynamic Time Warping
for Big Data Streams. In 2018 IEEE International Conference on Big Data
(Big Data). 2924–2929. https://doi.org/10.1109/BigData.2018.8621878

[16] Ross McIlroy. 2016. Ignition: V8 Inter-
preter. https://docs.google.com/document/d/
11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/edit

[17] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. 2014. On the Use of
Stack Traces to Improve Text Retrieval-Based Bug Localization. In 2014
IEEE International Conference on Software Maintenance and Evolution.
151–160. https://doi.org/10.1109/ICSME.2014.37

[18] Saul B. Needleman and Christian D. Wunsch. 1970. A General Method
Applicable to the Search for Similarities in the Amino Acid Sequence

of Two Proteins. 48, 3 (1970), 443–453. https://doi.org/10.1016/0022-
2836(70)90057-4

[19] V8 official web page. 2019. V8 JavaScript Engine. https://v8.dev/
[20] Izaskun Oregi, Aritz Pérez, Javier Del Ser, and José A. Lozano. 2017. On-

Line Dynamic Time Warping for Streaming Time Series. In Machine
Learning and Knowledge Discovery in Databases, Michelangelo Ceci,
Jaakko Hollmén, Ljupco Todorovski, and Saso Vens, Celinand Dzeroski
(Eds.). Springer International Publishing, Cham, 591–605.

[21] The Chromium Projects. 2019. Run Chromium with Flags - The
Chromium Projects. https://www.chromium.org/developers/how-
tos/run-chromium-with-flags#TOC-V8-Flags

[22] David A Ramos and Dawson R. Engler. 2011. Practical, Low-effort
Equivalence Verification of Real Code. In Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV’11). Springer-
Verlag, Berlin, Heidelberg, 669–685. http://dl.acm.org/citation.cfm?
id=2032305.2032360

[23] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. 2010.
JSMeter: Comparing the Behavior of JavaScript Benchmarks with Real
Web Applications. In Proceedings of the 2010 USENIX Conference onWeb
Application Development (WebApps’10). USENIX Association, Berkeley,
CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=1863166.1863169

[24] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing 26, 1 (February 1978), 43–49.
https://doi.org/10.1109/TASSP.1978.1163055

[25] Stan Salvador and Philip Chan. 2007. FastDTW: Toward Accurate
Dynamic Time Warping in Linear Time and Space. Intell. Data Anal.
11, 5 (Oct. 2007), 561–580. http://dl.acm.org/citation.cfm?id=1367985.
1367993

[26] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
2013. Jalangi: A Selective Record-replay and Dynamic Analysis Frame-
work for JavaScript. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,
NY, USA, 488–498. https://doi.org/10.1145/2491411.2491447

[27] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan
Reis, Melina Mongiovi, Loris D’Antoni, and Bjoern Hartmann. 2017.
TraceDiff: Debugging Unexpected Code Behavior Using Trace Di-
vergences. CoRR abs/1708.03786 (2017). arXiv:1708.03786 http:
//arxiv.org/abs/1708.03786

[28] Toon Verwaest and Marja Hölttä. 2019. Blazingly Fast Parsing, Part 2:
Lazy Parsing · V8. https://v8.dev/blog/preparser

[29] M. Weber, R. Brendel, and H. Brunst. 2012. Trace File Comparison
with a Hierarchical Sequence Alignment Algorithm. In 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with
Applications. 247–254. https://doi.org/10.1109/ISPA.2012.40

31

	List of Papers
	Acknowledgement
	Contents
	Thesis
	Introduction
	WebAssembly
	Predictability in WebAssembly ecosystems
	Problem statements
	Approach: Software Diversification
	Summary of research papers
	Thesis outline

	Background and state of the art
	WebAssembly
	From source code to WebAssembly
	WebAssembly's binary format
	WebAssembly's runtime
	WebAssembly's control-flow
	Security and reliability for WebAssembly
	Open challenges

	Software diversification
	Automatic generation of software variants
	Equivalence Checking
	Variants deployment
	Measuring Software Diversification
	Offensive or Defensive assessment of diversification

	Open challenges for Software Diversification

	Automatic Software Diversification for WebAssembly
	CROW: Code Randomization of WebAssembly
	Enumerative synthesis
	Constant inferring
	Exemplifying CROW

	MEWE: Multi-variant Execution for WebAssembly
	Multivariant call graph
	Exemplifying a Multivariant binary

	WASM-MUTATE: Fast and Effective Binary Diversification for WebAssembly
	WebAssembly Rewriting Rules
	E-Graph traversal
	Exemplifying WASM-MUTATE

	Comparing CROW, MEWE, and WASM-MUTATE
	Security applications

	Assessing Software Diversification for WebAssembly
	Offensive Diversification: Malware evasion
	Cryptojacking defense evasion
	Methodology
	Results

	Defensive Diversification: speculative side-channel protection
	Threat model: speculative side-channel attacks
	Methodology
	Results

	Conclusions

	Conclusions and Future Work
	Summary of technical contributions
	Key results of the thesis
	Future Work
	Data augmentation for Machine Learning on WebAssembly programs
	Improving WebAssembly malware detection via canonicalization
	Oneshot Diversification

	References

	Included papers
	WebAssembly Diversification for Malware Evasion
	WASM-MUTATE: Fast and Effective Binary Diversification for WebAssembly
	CROW: Code Diversification for WebAssembly
	Multi-Variant Execution at the Edge
	Superoptimization of WebAssembly Bytecode
	Scalable Comparison of JavaScript V8 Bytecode Traces

