
Wasm-mutate: Fuzzing WebAssembly Compilers with E-Graphs
Talk proposal for EGRAPHS 2022.

Javier Cabrera Arteaga
KTH Royal Institute of Technology

javierca@kth.se

Nicholas Fitzgerald
Fastly Inc.

nfitzgerald@fastly.com

Martin Monperrus
KTH Royal Institute of Technology

monperrus@kth.se

Benoit Baudry
KTH Royal Institute of Technology

baudry@kth.se

1 Introduction
Fuzzing is a software testing technique used to find security,
stability, and correctness issues by feeding pseudo-random
data as input to a program. [2]. A program’s input domain
is typically too large to enumerate exhaustively. Therefore,
instead of exhaustive enumeration, we use fuzzing to test
a subset of the input space. For example, the input space
of compilers is all possible programs that can be written
in the compiler’s source language. That is an infinite value
space, which needs to be sampled when searching for defects
in a compiler. In this work, we use e-graphs to improve
input generation for fuzzing compilers. We implement this
technique for fuzzing Wasm compilers, but the approach
should also generalize to other source languages.

We present, wasm-mutate 1 , a tool for fuzzing Wasm com-
pilers and other Wasm related tools such as validators or
interpreters. Given a valid Wasm input program, it produces
a sequence of Wasm programs that are semantically equiva-
lent to its original input. Wasm-mutate follows the notion of
program equivalence modulo input [1], i.e., for all possible
program inputs the variants should provide the same output.
It represents the search space for new variants as an e-graph,
and it exploits the property that any traversal through the
e-graph represents a semantically equivalent variant of the
input program.

This talk will focus on the proposed algorithm to traverse
the e-graph in order to provide semantically equivalent code
variants, as well as the ways we leverage wasm-mutate while
fuzzing. In the following sections, we discuss the design
behind wasm-mutate and its e-graph traversal algorithm.

2 The Peephole Mutator’s E-Graph
At a high level, wasm-mutate is a framework for defining
mutators. It takes a Wasmmodule as input and returns a lazy
sequence of mutated variants of that input Wasm. The pri-
mary mutator is the peephole mutator, which is responsible

1https://github.com/bytecodealliance/wasm-tools/tree/main/crates/
wasm-mutate

PL’18, January 01–03, 2018, New York, NY, USA
2018.

for rewriting instruction sequences in the inputWasm’s func-
tion bodies. The peephole mutator 1. ) inspects the Wasm’s
code section, 2. ) selects a random function within it, 3. )
selects a random instruction within the function, 4. ) con-
structs a data-flow graph rooted at the selected instruction,
5. ) applies one or more random rewrite rules, and 6. ) re-en-
codes the Wasm module with the new, rewritten expression
to produce a mutated variant. The peephole mutator defines
a number of rewrite rules. A rewrite rule can be seen as a
pair, (LHS, RHS), in which the LHS part is the code to re-
place and RHS is the semantically equivalent replacement.
For example, (𝑥, 𝑥 𝑜𝑟 𝑥), in which the 𝑥 LHS is replaced by
an idempotent bit-wise 𝑜𝑟 operation with itself.
wasm-mutate’s performance is essential, as fuzzing cam-

paigns often have a time budget and the faster we can gener-
ate test inputs, the more we can exercise our compiler within
the time budget. At the same time, the quality of the gen-
erated test inputs cannot be compromised: quickly testing
the same low-quality input over and over is inefficient and
unlikely to uncover bugs.
E-graphs, and the egg [4] implementation, are useful for

balancing performance and quality of generated test inputs.
Although e-graphs are often paired with a cost function
to extract optimal expressions for program optimizers, any
path traversal through the e-graph produces a semantically
equivalent expression. Wasm-mutate leverages this prop-
erty to generate mutated variants. We traverse the e-graph,
randomly selecting an e-node within each e-class that we
visit, producing a random-but-equivalent expression. Be-
cause the e-graph typically represents an infinite number
of expressions, we can extract an infinite number of them
that are equivalent to the input expression from the e-graph.
Although the construction of the e-graph itself can be expen-
sive, we can reuse the e-graph many times after construction,
amortizing the construction costs. We can also speed up con-
struction by limiting the number of rewrites applied to the
e-graph. Extracting a random expression from the e-graph
is described by algorithm 1.
The e-graph traversal is summarized in Algorithm 1. It

receives an e-graph, an e-class (initially the root’s e-class),
and the maximum depth of expression to extract. The depth

1

https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate


PL’18, January 01–03, 2018, New York, NY, USA Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit Baudry

Algorithm 1 e-graph traversal algorithm.
1: procedure traverse(𝑒𝑔𝑟𝑎𝑝ℎ, 𝑒𝑐𝑙𝑎𝑠𝑠 , 𝑑𝑒𝑝𝑡ℎ)
2: if depth = 0 then
3: return smallest_tree_from(egraph, eclass)
4: else
5: 𝑛𝑜𝑑𝑒𝑠 ← 𝑒𝑔𝑟𝑎𝑝ℎ [𝑒𝑐𝑙𝑎𝑠𝑠 ]
6: 𝑛𝑜𝑑𝑒 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑜𝑖𝑐𝑒 (𝑛𝑜𝑑𝑒𝑠)
7: 𝑒𝑥𝑝𝑟 ← (𝑛𝑜𝑑𝑒, 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 = [])
8: for each 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9: 𝑠𝑢𝑏𝑒𝑥𝑝𝑟 ← TRAVERSE(𝑒𝑔𝑟𝑎𝑝ℎ, 𝑐ℎ𝑖𝑙𝑑, 𝑑𝑒𝑝𝑡ℎ − 1)
10: 𝑒𝑥𝑝𝑟 .𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ← 𝑒𝑥𝑝𝑟 .𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ∪ {𝑠𝑢𝑏𝑒𝑥𝑝𝑟 }
11: return 𝑒𝑥𝑝𝑟

orx

r2r1

Figure 1. e-graph for idempotent bitwise-or rewriting rule.
Solid lines represent operand-operator relations and dashed
lines represent equivalent class inclusion.

parameter ensures that we don’t infinitely recurse, and as
soon as it becomes zero, the algorithm returns the smallest
expression out of the current e-class (line 3). Otherwise,
we select a random e-node from the e-class (lines 5 and 6),
and the process recursively continues with the children of
the selected e-node (line 8) with a decreasing depth. The
subexpressions are composed together (line 10) for each
child, and then the entire expression is returned (line 11).
The contribution of wasm-mutate is what is defined between
lines 5 and 11.
We illustrate the algorithm with an example using the

same rewriting rule previously mentioned. The peephole
mutator randomly selects an instruction. An e-graph is con-
structed for the instruction. In this example, the peephole
mutator has only one rewriting rule:

𝑥 → (𝑥 𝑜𝑟 𝑥)
Notice that this rewrite rule is not optimal: it increases the
Wasm code size, rather than decreasing it, and introduces
an additional operation to be evaluated. However, in the
context of fuzzing, it is valuable. This rewrite rule can stress
a compiler’s constant folding optimization passes.

The e-graph for our single rewrite rule is shown in Figure 1.
Applying the procedure of the algorithm 1 will provide, in
theory, an infinite number of equivalent expressions:

𝑑𝑒𝑝𝑡ℎ = 0→ 𝑥

𝑑𝑒𝑝𝑡ℎ = 1→ 𝑥 𝑜𝑟 𝑥

𝑑𝑒𝑝𝑡ℎ = 2→ 𝑥 𝑜𝑟 (𝑥 𝑜𝑟 𝑥)
𝑑𝑒𝑝𝑡ℎ = 3→ (𝑥 𝑜𝑟 𝑥) 𝑜𝑟 (𝑥 𝑜𝑟 (𝑥 𝑜𝑟 𝑥))

3 Fuzzing with wasm-mutate
We have used wasm-mutate in two different ways while
fuzzing the Wasmtime2 WebAssembly runtime :

3.1 Differential Fuzzing
In this mode of fuzzing [3], we run an initial Wasm program
with some arbitrary inputs, then generate a series of mutated
variants with wasm-mutate and run each variant with the
same inputs. Because wasm-mutate produces variants that
are equivalent modulo input, if the results of the variants
are not identical to the results of the initial Wasm program,
that is indicative of a bug in Wasmtime or its compiler.

3.2 Structure-Aware Fuzzing with a Custom
libFuzzer Mutator

In this mode of fuzzing, we relax wasm-mutate’s equivalent
modulo input constraint and allow it to generate variants that
will not produce the same results that the original Wasm pro-
gram would. We hook it up to libFuzzer’s custom mutation
hook3 and use it as a strategy to generate new, independent
Wasm test cases. libFuzzer’s built in mutators will do things
like add, remove, or swap bytes from a file in the fuzz corpus.
These canned mutations will most often produce an invalid
Wasm file. On the other hand, wasm-mutate will always pro-
duce valid Wasm files, avoiding us wasting fuzzing cycles
on uninteresting inputs that will bounce off our Wasm com-
piler’s parser, or which might parse but will contain type
errors and fail to validate.

4 Conclusion
Using e-graphs to generate semantically equivalent pro-
grams and using those programs for differential fuzzing is
a promising technique. While we have used it to exercise a
WebAssembly compiler and runtime, the approach should
generalize to other source languages.

References
[1] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation

via Equivalence modulo Inputs. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). 216–226.

[2] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cyber-
security 1, 1 (dec 2018), 1–13. https://doi.org/10.1186/S42400-018-0002-
Y/TABLES/5

[3] WilliamM.McKeeman. 1998. Differential Testing for Software. DIGITAL
TECHNICAL JOURNAL 10, 1 (1998), 100–107.

[4] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2020. egg: Fast and Exten-
sible Equality Saturation. arXiv e-prints, Article arXiv:2004.03082 (April
2020), arXiv:2004.03082 pages. arXiv:2004.03082 [cs.PL]

2https://github.com/bytecodealliance/wasmtime
3https://github.com/google/fuzzing/blob/master/docs/structure-aware-
fuzzing.md

2

https://doi.org/10.1186/S42400-018-0002-Y/TABLES/5
https://doi.org/10.1186/S42400-018-0002-Y/TABLES/5
https://arxiv.org/abs/2004.03082
https://github.com/bytecodealliance/wasmtime

	1 Introduction
	2 The Peephole Mutator's E-Graph
	3 Fuzzing with wasm-mutate
	3.1 Differential Fuzzing
	3.2 Structure-Aware Fuzzing with a Custom libFuzzer Mutator

	4 Conclusion
	References

